These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 26737636)

  • 1. Manufacturing of microcirculation phantoms using rapid prototyping technologies.
    Buchoux A; Valluri P; Smith S; Stokes AA; Hoskins PR; Sboros V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5908-11. PubMed ID: 26737636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Two Inexpensive Rapid Prototyping Methods for Manufacturing Filament Target Ultrasound Phantoms.
    Füzesi K; Gyöngy M
    Ultrasound Med Biol; 2017 Mar; 43(3):712-720. PubMed ID: 28034541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylonitrile Butadiene Styrene (ABS) plastic based low cost tissue equivalent phantom for verification dosimetry in IMRT.
    Kumar R; Sharma SD; Deshpande S; Ghadi Y; Shaiju VS; Amols HI; Mayya YS
    J Appl Clin Med Phys; 2009 Dec; 11(1):3030. PubMed ID: 20160681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical note: rapid prototyping of 3D grid arrays for image guided therapy quality assurance.
    Kittle D; Holshouser B; Slater JM; Guenther BD; Pitsianis NP; Pearlstein RD
    Med Phys; 2008 Dec; 35(12):5708-12. PubMed ID: 19175128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric accuracy of an acrylonitrile butadiene styrene canine tibia model fabricated using fused deposition modelling and the effects of hydrogen peroxide gas plasma sterilisation.
    Hsu CP; Lin CS; Fan CH; Chiang NY; Tsai CW; Chang CM; Liu IL
    BMC Vet Res; 2020 Dec; 16(1):478. PubMed ID: 33298063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.
    Sun Z; Shen Z; Zhang X; Ma S
    Environ Technol; 2015; 36(1-4):160-8. PubMed ID: 25413110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical characterization of 3D printed PLA and ABS filaments for diffuse optics applications.
    Amendola C; Lacerenza M; Pirovano I; Contini D; Spinelli L; Cubeddu R; Torricelli A; Re R
    PLoS One; 2021; 16(6):e0253181. PubMed ID: 34133454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional printing versus conventional machining in the creation of a meatal urethral dilator: development and mechanical testing.
    Chen MY; Skewes J; Daley R; Woodruff MA; Rukin NJ
    Biomed Eng Online; 2020 Jul; 19(1):55. PubMed ID: 32611431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MRI-guided focused ultrasound robotic system for the treatment of bone cancer.
    Menikou G; Yiallouras C; Yiannakou M; Damianou C
    Int J Med Robot; 2017 Mar; 13(1):. PubMed ID: 27422861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of the toxic and refractory pollutants in acrylonitrile-butadiene-styrene resin manufacturing wastewater by gas chromatography spectrometry with a mass or flame ionization detector.
    Lai B; Zhou Y; Yang P; Wang K
    J Chromatogr A; 2012 Jun; 1244():161-7. PubMed ID: 22621884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of surgical instruments for long-duration space missions.
    Wong JY; Pfahnl AC
    Aviat Space Environ Med; 2014 Jul; 85(7):758-63. PubMed ID: 25022166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices.
    Anciaux SK; Bowser MT
    Electrophoresis; 2020 Feb; 41(3-4):225-234. PubMed ID: 31816114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional printing CT-derived objects with controllable radiopacity.
    Hamedani BA; Melvin A; Vaheesan K; Gadani S; Pereira K; Hall AF
    J Appl Clin Med Phys; 2018 Mar; 19(2):317-328. PubMed ID: 29411529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal behavior of vehicle plastic blends contained acrylonitrile-butadiene-styrene (ABS) in pyrolysis using TG-FTIR.
    Liu G; Liao Y; Ma X
    Waste Manag; 2017 Mar; 61():315-326. PubMed ID: 28161337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.
    Wang CC; Lee CM
    Water Sci Technol; 2006; 53(6):181-6. PubMed ID: 16749456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and Fabrication of Kidney Phantoms for Internal Radiation Dosimetry Using 3D Printing Technology.
    Tran-Gia J; Schlögl S; Lassmann M
    J Nucl Med; 2016 Dec; 57(12):1998-2005. PubMed ID: 27445291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acute health effects of desktop 3D printing (fused deposition modeling) using acrylonitrile butadiene styrene and polylactic acid materials: An experimental exposure study in human volunteers.
    Gümperlein I; Fischer E; Dietrich-Gümperlein G; Karrasch S; Nowak D; Jörres RA; Schierl R
    Indoor Air; 2018 Jul; 28(4):611-623. PubMed ID: 29500848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing - Evaluating Particle Emissions of a 3D Printing Pen.
    Sigloch H; Bierkandt FS; Singh AV; Gadicherla AK; Laux P; Luch A
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33104072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The use of CAD/CAM and rapid fabrication technologies in prosthesis and orthotics manufacturing].
    Ciobanu O
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(2):642-8. PubMed ID: 23077967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.