BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26737682)

  • 41. A framework for the online analysis of multi-electrode gastric slow wave recordings.
    Bull SH; O'Grady G; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1741-4. PubMed ID: 22254663
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A miniature bidirectional telemetry system for in vivo gastric slow wave recordings.
    Farajidavar A; O'Grady G; Rao SM; Cheng LK; Abell T; Chiao JC
    Physiol Meas; 2012 Jun; 33(6):N29-37. PubMed ID: 22635054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Every slow-wave impulse is associated with motor activity of the human stomach.
    Hocke M; Schöne U; Richert H; Görnert P; Keller J; Layer P; Stallmach A
    Am J Physiol Gastrointest Liver Physiol; 2009 Apr; 296(4):G709-16. PubMed ID: 19095766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Design and Application of an Inflatable Cuff to Aid High-Resolution Intestinal Slow Wave Recordings
    Miller KJW; Cheng LK; Angeli TR; Avci R; Paskaranandavadivel N
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3953-3956. PubMed ID: 33018865
    [TBL] [Abstract][Full Text] [Related]  

  • 46. High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia.
    O'Grady G; Egbuji JU; Du P; Lammers WJ; Cheng LK; Windsor JA; Pullan AJ
    Neurogastroenterol Motil; 2011 Sep; 23(9):e345-55. PubMed ID: 21714831
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationships between gastric slow wave frequency, velocity, and extracellular amplitude studied by a joint experimental-theoretical approach.
    Wang TH; Du P; Angeli TR; Paskaranandavadivel N; Erickson JC; Abell TL; Cheng LK; O'Grady G
    Neurogastroenterol Motil; 2018 Jan; 30(1):. PubMed ID: 28695661
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The bioelectrical basis and validity of gastrointestinal extracellular slow wave recordings.
    Angeli TR; Du P; Paskaranandavadivel N; Janssen PW; Beyder A; Lentle RG; Bissett IP; Cheng LK; O'Grady G
    J Physiol; 2013 Sep; 591(18):4567-79. PubMed ID: 23713030
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A multiscale model of the electrophysiological basis of the human electrogastrogram.
    Du P; O'Grady G; Cheng LK; Pullan AJ
    Biophys J; 2010 Nov; 99(9):2784-92. PubMed ID: 21044575
    [TBL] [Abstract][Full Text] [Related]  

  • 50. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of frequency on the wave form of propagated slow waves in canine gastric antral muscle.
    Publicover NG; Sanders KM
    J Physiol; 1986 Feb; 371():179-89. PubMed ID: 3701649
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design and Validation of a Surface-Contact Electrode for Gastric Pacing and Concurrent Slow-Wave Mapping.
    Alighaleh S; Cheng L; Angeli-Gordon TR; Aghababaie Z; O'Grady G; Paskaranandavadivel N
    IEEE Trans Biomed Eng; 2021 Aug; 68(8):2574-2581. PubMed ID: 33656985
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Non-invasive electrocologram: correlation between the electrical activity of the dog colonic muscle wall recorded by cutaneous and implanted electrodes.
    Noeva A; Gurkov P; Penchev P; Atanassova E
    Acta Physiol Pharmacol Bulg; 1996; 22(3-4):77-81. PubMed ID: 9715285
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A system and method for online high-resolution mapping of gastric slow-wave activity.
    Bull SH; O'Grady G; Du P; Cheng LK
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2679-87. PubMed ID: 24860024
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of the slow wave component of the electroenterogram from Laplacian abdominal surface recordings in humans.
    Prats-Boluda G; Garcia-Casado J; Martinez-de-Juan JL; Ponce JL
    Physiol Meas; 2007 Sep; 28(9):1115-33. PubMed ID: 17827658
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interstitial cells of cajal generate electrical slow waves in the murine stomach.
    Ordög T; Ward SM; Sanders KM
    J Physiol; 1999 Jul; 518(Pt 1):257-69. PubMed ID: 10373707
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-resolution optical mapping of gastric slow wave propagation.
    Zhang H; Yu H; Walcott GP; Paskaranandavadivel N; Cheng LK; O'Grady G; Rogers JM
    Neurogastroenterol Motil; 2019 Jan; 31(1):e13449. PubMed ID: 30129082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gastric distension alters frequency and regularity but not amplitude of the gastric slow wave.
    Zhu H; Chen JD
    Neurogastroenterol Motil; 2004 Dec; 16(6):745-52. PubMed ID: 15601424
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.