These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 26737682)

  • 61. High-resolution entrainment mapping of gastric pacing: a new analytical tool.
    O'Grady G; Du P; Lammers WJ; Egbuji JU; Mithraratne P; Chen JD; Cheng LK; Windsor JA; Pullan AJ
    Am J Physiol Gastrointest Liver Physiol; 2010 Feb; 298(2):G314-21. PubMed ID: 19926815
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Response of the electric activity in the human stomach to water and a solid meal.
    Chen J; McCallum RW
    Med Biol Eng Comput; 1991 Jul; 29(4):351-7. PubMed ID: 1787749
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A tissue framework for simulating the effects of gastric electrical stimulation and in vivo validation.
    Du P; O'Grady G; Windsor JA; Cheng LK; Pullan AJ
    IEEE Trans Biomed Eng; 2009 Dec; 56(12):2755-61. PubMed ID: 19643697
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterization of Electrophysiological Propagation by Multichannel Sensors.
    Bradshaw LA; Kim JH; Somarajan S; Richards WO; Cheng LK
    IEEE Trans Biomed Eng; 2016 Aug; 63(8):1751-9. PubMed ID: 26595907
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A system for automated quantification of cutaneous electrogastrograms.
    Paskaranandavadivel N; Bull SH; Parsell D; Cheng LK; Abell TL
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6098-101. PubMed ID: 26737683
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Directed endoscopic mucosal mapping of normal and dysrhythmic gastric slow waves in healthy humans.
    Coleski R; Hasler WL
    Neurogastroenterol Motil; 2004 Oct; 16(5):557-65. PubMed ID: 15500512
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Improved Visualization of Gastrointestinal Slow Wave Propagation Using a Novel Wavefront-Orientation Interpolation Technique.
    Mayne TP; Paskaranandavadivel N; Erickson JC; OGrady G; Cheng LK; Angeli TR
    IEEE Trans Biomed Eng; 2018 Feb; 65(2):319-326. PubMed ID: 29364117
    [TBL] [Abstract][Full Text] [Related]  

  • 68. [Incidences of resistance capacity (RC) and of electrode-interval enlargement on the gastro-intestinal electrical activity of the awake dog (author's transl)].
    Santini R; Dumas J; Thouvenot J
    Pathol Biol (Paris); 1979 Oct; 27(8):459-64. PubMed ID: 392415
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlation between slow-wave myoelectric signals and mechanical contractions in the gastrointestinal tract: Advanced electromyographic method in rats.
    Szucs KF; Nagy A; Grosz G; Tiszai Z; Gaspar R
    J Pharmacol Toxicol Methods; 2016; 82():37-44. PubMed ID: 27475721
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Quantification of Dynamic Gastric Slow Wave Activity using Recurrence Plots.
    Paskaranandavadivel N; Avci R; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():729-732. PubMed ID: 31946000
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Detection of gastric slow wave propagation from the cutaneous electrogastrogram.
    Chen JD; Zou X; Lin X; Ouyang S; Liang J
    Am J Physiol; 1999 Aug; 277(2):G424-30. PubMed ID: 10444457
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-resolution mapping of in vivo gastrointestinal slow wave activity using flexible printed circuit board electrodes: methodology and validation.
    Du P; O'Grady G; Egbuji JU; Lammers WJ; Budgett D; Nielsen P; Windsor JA; Pullan AJ; Cheng LK
    Ann Biomed Eng; 2009 Apr; 37(4):839-46. PubMed ID: 19224368
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mathematical Modeling of Gastric Slow Waves During Electrical Field Stimulation.
    Athavale ON; Cheng LK; Clark AR; Avci R; Du P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2266-2269. PubMed ID: 36086185
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Detection of gastric slow wave uncoupling from multi-channel electrogastrogram: validations and applications.
    Wang ZS; Elsenbruch S; Orr WC; Chen JD
    Neurogastroenterol Motil; 2003 Oct; 15(5):457-65. PubMed ID: 14507347
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Detection of gastric slow oscillatory contraction using parasagittal cine MR images: Comparison with simultaneously measured electrogastrogram.
    Kaneoke Y; Donishi T; Terada M
    Magn Reson Imaging; 2021 Jan; 75():149-155. PubMed ID: 33137456
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Quantification of velocity anisotropy during gastric electrical arrhythmia.
    Du P; O'Grady G; Paskaranandavadivel N; Angeli TR; Lahr C; Abell TL; Cheng LK; Pullan AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4402-5. PubMed ID: 22255315
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Wet-printing of PEDOT:PSS Microelectrodes for Gastric Slow Wave Recording.
    Zhang P; Athavale ON; Cowan RAL; Clark AR; Avci R; Cheng LK; Travas-Sejdic J; Du P
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():4868-4871. PubMed ID: 36086592
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Gastric myoelectric and motor activity in dogs after isoflurane anesthesia.
    Hall JA; Dunlop CI; Solie TN; Hodgson DS; Twedt DC
    Vet Surg; 1995; 24(5):456-63. PubMed ID: 8585151
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Generation and propagation of gastric slow waves.
    van Helden DF; Laver DR; Holdsworth J; Imtiaz MS
    Clin Exp Pharmacol Physiol; 2010 Apr; 37(4):516-24. PubMed ID: 19930430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.