BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26737714)

  • 1. Wavelet-based motion artifact removal for electrodermal activity.
    Chen W; Jaques N; Taylor S; Sano A; Fedor S; Picard RW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6223-6. PubMed ID: 26737714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Breathe Easy EDA: A MATLAB toolbox for psychophysiology data management, cleaning, and analysis.
    Ksander JC; Kark SM; Madan CR
    F1000Res; 2018; 7():216. PubMed ID: 30647904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Preliminary Study on Automatic Motion Artifact Detection in Electrodermal Activity Data Using Machine Learning.
    Hossain MB; Posada-Quintero HF; Kong Y; McNaboe R; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6920-6923. PubMed ID: 34892695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unsupervised automated paradigm for artifact removal from electrodermal activity in an uncontrolled clinical setting.
    Subramanian S; Tseng B; Barbieri R; Brown EN
    Physiol Meas; 2022 Nov; 43(11):. PubMed ID: 36113446
    [No Abstract]   [Full Text] [Related]  

  • 5. Adaptive thresholding increases sensitivity to detect changes in the rate of skin conductance responses to psychologically arousing stimuli in both laboratory and ambulatory settings.
    Kleckner IR; Wormwood JB; Jones RM; Culakova E; Barrett LF; Lord C; Quigley KS; Goodwin MS
    Int J Psychophysiol; 2024 Feb; 196():112280. PubMed ID: 38104772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelet-based motion artifact removal for functional near-infrared spectroscopy.
    Molavi B; Dumont GA
    Physiol Meas; 2012 Feb; 33(2):259-70. PubMed ID: 22273765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian Elimination-Based Novel Canonical Correlation Analysis Method for EEG Motion Artifact Removal.
    Roy V; Shukla S; Shukla PK; Rawat P
    J Healthc Eng; 2017; 2017():9674712. PubMed ID: 29118966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of ambulatory electrodermal activity and the handling of low-quality segments.
    Pattyn E; Thammasan N; Lutin E; Tourolle D; Van Kraaij A; Kosunen I; De Raedt W; Van Hoof C
    Comput Methods Programs Biomed; 2023 Dec; 242():107859. PubMed ID: 37863009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity Signals: A Preliminary Study.
    Hossain MB; Posada-Quintero HF; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():325-328. PubMed ID: 36085929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid wavelet and EMD/ICA approach for artifact suppression in pervasive EEG.
    Bono V; Das S; Jamal W; Maharatna K
    J Neurosci Methods; 2016 Jul; 267():89-107. PubMed ID: 27102040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrodermal responses to discrete stimuli measured by skin conductance, skin potential, and skin susceptance.
    Bari DS; Aldosky HYY; Tronstad C; Kalvøy H; Martinsen ØG
    Skin Res Technol; 2018 Feb; 24(1):108-116. PubMed ID: 28776764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing.
    Greco A; Valenza G; Lanata A; Scilingo EP; Citi L
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):797-804. PubMed ID: 26336110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity.
    Hossain MB; Posada-Quintero HF; Chon KH
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3601-3611. PubMed ID: 35544485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Electrodermal Activity from Multiple Body Locations Based on Standard EDA Indices' Quality and Robustness against Motion Artifact.
    Hossain MB; Kong Y; Posada-Quintero HF; Chon KH
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A kurtosis-based wavelet algorithm for motion artifact correction of fNIRS data.
    Chiarelli AM; Maclin EL; Fabiani M; Gratton G
    Neuroimage; 2015 May; 112():128-137. PubMed ID: 25747916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Point process temporal structure characterizes electrodermal activity.
    Subramanian S; Barbieri R; Brown EN
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26422-26428. PubMed ID: 33008878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Publication recommendations for electrodermal measurements.
    Boucsein W; Fowles DC; Grimnes S; Ben-Shakhar G; roth WT; Dawson ME; Filion DL;
    Psychophysiology; 2012 Aug; 49(8):1017-34. PubMed ID: 22680988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of grip force on skin conductance measured from a handheld device.
    Tartz R; Vartak A; King J; Fowles D
    Psychophysiology; 2015 Jan; 52(1):8-19. PubMed ID: 25252169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Motion Artifact Correction Procedure for fNIRS Signals Based on Wavelet Transform and Infrared Thermography Video Tracking.
    Perpetuini D; Cardone D; Filippini C; Chiarelli AM; Merla A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.