These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 26737767)
1. Ambient light cancellation in photoplethysmogram application using alternating sampling and charge redistribution technique. Kim J; Lee T; Kim J; Ko H Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6441-4. PubMed ID: 26737767 [TBL] [Abstract][Full Text] [Related]
2. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation. Kim J; Kim J; Ko H Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26729122 [TBL] [Abstract][Full Text] [Related]
3. A 280 μW, 108 dB DR PPG-Readout IC With Reconfigurable, 2nd-Order, Incremental ΔΣM Front-End for Direct Light-to-Digital Conversion. Marefat F; Erfani R; Kilgore KL; Mohseni P IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1183-1194. PubMed ID: 33186120 [TBL] [Abstract][Full Text] [Related]
4. A 2.6 μW Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 μW LED Power for Continuous Health Monitoring. Caizzone A; Boukhayma A; Enz C IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1243-1253. PubMed ID: 31581097 [TBL] [Abstract][Full Text] [Related]
5. 14.85 µW Analog Front-End for Photoplethysmography Acquisition with 142-dBΩ Gain and 64.2-pA Lin B; Atef M; Wang G Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30691150 [TBL] [Abstract][Full Text] [Related]
6. A low-power high-sensitivity analog front-end for PPG sensor. Binghui Lin ; Atef M; Guoxing Wang Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():861-864. PubMed ID: 29060008 [TBL] [Abstract][Full Text] [Related]
7. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849 [TBL] [Abstract][Full Text] [Related]
8. A Dual-Channel PPG Readout System With Motion-Tolerant Adaptability for OLED-OPD Sensors. Pandey RK; Chao PC IEEE Trans Biomed Circuits Syst; 2022 Feb; 16(1):36-51. PubMed ID: 34962876 [TBL] [Abstract][Full Text] [Related]
9. Biosignal integrated circuit with simultaneous acquisition of ECG and PPG for wearable healthcare applications. Kim H; Park Y; Ko Y; Mun Y; Lee S; Ko H Technol Health Care; 2018; 26(1):3-9. PubMed ID: 29060948 [TBL] [Abstract][Full Text] [Related]
10. A Low-Power Photoplethysmogram-Based Heart Rate Sensor Using Heartbeat Locked Loop. Lee J; Jang DH; Park S; Cho S IEEE Trans Biomed Circuits Syst; 2018 Dec; 12(6):1220-1229. PubMed ID: 30334807 [TBL] [Abstract][Full Text] [Related]
11. A 119dB Dynamic Range Charge Counting Light-to-Digital Converter For Wearable PPG/NIRS Monitoring Applications. Lin Q; Xu J; Song S; Breeschoten A; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2020 Aug; 14(4):800-810. PubMed ID: 32746343 [TBL] [Abstract][Full Text] [Related]
12. A Low-Power, Dual-Wavelength Photoplethysmogram (PPG) SoC With Static and Time-Varying Interferer Removal. Winokur ES; O'Dwyer T; Sodini CG IEEE Trans Biomed Circuits Syst; 2015 Aug; 9(4):581-9. PubMed ID: 25373112 [TBL] [Abstract][Full Text] [Related]
13. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors. Song H; Park Y; Kim H; Cho DI; Ko H Sensors (Basel); 2015 Oct; 15(10):26009-17. PubMed ID: 26473877 [TBL] [Abstract][Full Text] [Related]
14. Low-Noise Photoplethysmography Sensor Using Correlated Double Sampling for Heartbeat Interval Acquisition. Watanabe K; Izumi S; Sasai K; Yano Y; Kawaguchi H; Yoshimoto M IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1552-1562. PubMed ID: 31796415 [TBL] [Abstract][Full Text] [Related]
15. A 134 DB Dynamic Range Noise Shaping Slope Light-to-Digital Converter for Wearable Chest PPG Applications. Lin Q; Song S; Van Wegberg R; Sijbers W; Biswas D; Konijnenburg M; Van Hoof C; Tavernier F; Van Helleputte N IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1224-1235. PubMed ID: 34818192 [TBL] [Abstract][Full Text] [Related]
16. A Noninvasive Glucose Monitoring SoC Based on Single Wavelength Photoplethysmography. Hina A; Saadeh W IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):504-515. PubMed ID: 32149655 [TBL] [Abstract][Full Text] [Related]
17. A CMOS micromachined capacitive tactile sensor with integrated readout circuits and compensation of process variations. Tsai TH; Tsai HC; Wu TK IEEE Trans Biomed Circuits Syst; 2014 Oct; 8(5):608-16. PubMed ID: 25314707 [TBL] [Abstract][Full Text] [Related]
18. Monte Carlo Analysis of Optical Interactions in Reflectance and Transmittance Finger Photoplethysmography. Chatterjee S; Kyriacou PA Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769957 [TBL] [Abstract][Full Text] [Related]
19. An integrated CMOS bio-potential amplifier with a feed-forward DC cancellation topology. Parthasarathy J; Erdman AG; Redish AD; Ziaie B Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2974-7. PubMed ID: 17945749 [TBL] [Abstract][Full Text] [Related]
20. Plug-and-play, single-chip photoplethysmography. Chandrasekar D; Arnetz B; Levy P; Basu AS Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3243-6. PubMed ID: 23366617 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]