These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26737807)

  • 1. Optogenetic control of thalamus as a tool for interrupting penicillin induced seizures.
    Han Y; Ma F; Li H; Wang Y; Xu K
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6606-9. PubMed ID: 26737807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optogenetic activation of the reticular nucleus of the thalamus attenuates limbic seizures via inhibition of the midline thalamus.
    Wicker E; Forcelli PA
    Epilepsia; 2021 Sep; 62(9):2283-2296. PubMed ID: 34309008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model.
    Sukhotinsky I; Chan AM; Ahmed OJ; Rao VR; Gradinaru V; Ramakrishnan C; Deisseroth K; Majewska AK; Cash SS
    PLoS One; 2013; 8(4):e62013. PubMed ID: 23637949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pH-sensitive closed-loop nanomachine to control hyperexcitability at the single neuron level.
    Merolla A; Michetti C; Moschetta M; Vacca F; Ciano L; Emionite L; Astigiano S; Romei A; Horenkamp S; Berglund K; Gross RE; Cesca F; Colombo E; Benfenati F
    Nat Commun; 2024 Jul; 15(1):5609. PubMed ID: 38965228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optogenetic approach in epilepsy.
    Kokaia M; Andersson M; Ledri M
    Neuropharmacology; 2013 Jun; 69():89-95. PubMed ID: 22698957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Altered thalamic GABAA-receptor subunit expression in the stargazer mouse model of absence epilepsy.
    Seo S; Leitch B
    Epilepsia; 2014 Feb; 55(2):224-32. PubMed ID: 24417662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Attenuating midline thalamus bursting to mitigate absence epilepsy.
    Dong P; Bakhurin K; Li Y; Mikati MA; Cui J; Grill WM; Yin HH; Yang H
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2403763121. PubMed ID: 38968111
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic inhibition of chemically induced hypersynchronized bursting in mice.
    Berglind F; Ledri M; Sørensen AT; Nikitidou L; Melis M; Bielefeld P; Kirik D; Deisseroth K; Andersson M; Kokaia M
    Neurobiol Dis; 2014 May; 65():133-41. PubMed ID: 24491965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feline generalized penicillin epilepsy.
    Avoli M
    Ital J Neurol Sci; 1995; 16(1-2):79-82. PubMed ID: 7642356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidirectional Control of Generalized Epilepsy Networks via Rapid Real-Time Switching of Firing Mode.
    Sorokin JM; Davidson TJ; Frechette E; Abramian AM; Deisseroth K; Huguenard JR; Paz JT
    Neuron; 2017 Jan; 93(1):194-210. PubMed ID: 27989462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks.
    Soper C; Wicker E; Kulick CV; N'Gouemo P; Forcelli PA
    Neurobiol Dis; 2016 Mar; 87():102-15. PubMed ID: 26721319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic tools for modulating and probing the epileptic network.
    Zhao M; Alleva R; Ma H; Daniel AG; Schwartz TH
    Epilepsy Res; 2015 Oct; 116():15-26. PubMed ID: 26354163
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timing of high-frequency cortical stimulation in a genetic absence model.
    van Heukelum S; Kelderhuis J; Janssen P; van Luijtelaar G; Lüttjohann A
    Neuroscience; 2016 Jun; 324():191-201. PubMed ID: 26964688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fos expression in GHB-induced generalized absence epilepsy in the thalamus of the rat.
    Zhang X; Ju G; Le Gal La Salle G
    Neuroreport; 1991 Aug; 2(8):469-72. PubMed ID: 1912482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal dynamics of optogenetically induced and spontaneous seizure transitions in primary generalized epilepsy.
    Wagner FB; Truccolo W; Wang J; Nurmikko AV
    J Neurophysiol; 2015 Apr; 113(7):2321-41. PubMed ID: 25552645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thalamic stimulation in absence epilepsy.
    Lüttjohann A; van Luijtelaar G
    Epilepsy Res; 2013 Sep; 106(1-2):136-45. PubMed ID: 23602552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-activated channels in acute seizures.
    Kokaia M
    Epilepsia; 2011 Oct; 52 Suppl 8():16-8. PubMed ID: 21967352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic absence epilepsy rats from Strasbourg have increased corticothalamic expression of stargazin.
    Powell KL; Kyi M; Reid CA; Paradiso L; D'Abaco GM; Kaye AH; Foote SJ; O'Brien TJ
    Neurobiol Dis; 2008 Aug; 31(2):261-5. PubMed ID: 18556211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closed-loop seizure control with very high frequency electrical stimulation at seizure onset in the GAERS model of absence epilepsy.
    Nelson TS; Suhr CL; Freestone DR; Lai A; Halliday AJ; McLean KJ; Burkitt AN; Cook MJ
    Int J Neural Syst; 2011 Apr; 21(2):163-73. PubMed ID: 21442779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.