BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26737878)

  • 1. Neutron distribution and induced activity inside a Linac treatment room.
    Juste B; Miró R; Verdú G; Díez S; Campayo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6896-9. PubMed ID: 26737878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the neutron radiation field and air activation around a medical electron linac.
    Horst F; Fehrenbacher G; Zink K
    Radiat Prot Dosimetry; 2017 Apr; 174(2):147-158. PubMed ID: 27170731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neutron activation processes simulation in an Elekta medical linear accelerator head.
    Juste B; Miró R; Verdú G; Díez S; Campayo JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3026-8. PubMed ID: 25570628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of photoneutron fluxes emitted by electron accelerators in the 4-20 MeV range using Monte Carlo codes: A critical review.
    Sari A
    Appl Radiat Isot; 2023 Jan; 191():110506. PubMed ID: 36370471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the linac neutron dose profile for various depths and field sizes: a Monte Carlo study.
    Prasada DNY; Ciamaudi N; Fadli M; Tursinah R; Pawiro SA
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoneutron contamination from an 18 MV Saturne medical linear accelerator in the treatment room.
    Khosravi M; Shahbazi-Gahrouei D; Jabbari K; Nasri-Nasrabadi M; Baradaran-Ghahfarokhi M; Siavashpour Z; Gheisari R; Amiri B
    Radiat Prot Dosimetry; 2013 Sep; 156(3):356-63. PubMed ID: 23538892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of the photoneutron generation caused by a LinAc Beryllium window with a 6 MeV treatment beam.
    Juste B; Morato S; Salvat A; Miro R; Verdu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4150-4153. PubMed ID: 30441269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the production of neutrons in laminated barriers for 10 MV medical accelerator rooms.
    Facure A; da Silva AX; da Rosa LA; Cardoso SC; Rezende GF
    Med Phys; 2008 Jul; 35(7):3285-92. PubMed ID: 18697553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo study of Siemens PRIMUS photoneutron production.
    Pena J; Franco L; Gómez F; Iglesias A; Pardo J; Pombar M
    Phys Med Biol; 2005 Dec; 50(24):5921-33. PubMed ID: 16333164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs.
    Chibani O; Ma CM
    Med Phys; 2003 Aug; 30(8):1990-2000. PubMed ID: 12945965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of graphene/h-BN metamaterial in medical linear accelerators for reducing neutron leakage in the treatment room.
    Hassanpour M; Hassanpour M; Rezaie M; Khezripour S; Faruque MRI; Khandaker MU
    Phys Eng Sci Med; 2023 Sep; 46(3):1023-1032. PubMed ID: 37219796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutron spectra and dosimetric features around an 18 mv linac accelerator.
    Barquero R; Mendez R; Vega-Carrillo HR; Iñiguez MP; Edwards TM
    Health Phys; 2005 Jan; 88(1):48-58. PubMed ID: 15596989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation between radioactivity induced inside the treatment room and the undesirable thermal/resonance neutron radiation produced by linac.
    Konefał A; Orlef A; Dybek M; Maniakowski Z; Polaczek-Grelik K; Zipper W
    Phys Med; 2008 Dec; 24(4):212-8. PubMed ID: 18339569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does concrete composition affect photoneutron production inside radiation therapy bunkers?
    Mesbahi A; Azarpeyvand AA; Khosravi HR
    Jpn J Radiol; 2012 Feb; 30(2):162-6. PubMed ID: 22180187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Essential considerations for accurate evaluation of photoneutron contamination in Radiotherapy.
    Karimi AH; Brkić H; Shahbazi-Gahrouei D; Haghighi SB; Jabbari I
    Appl Radiat Isot; 2019 Mar; 145():24-31. PubMed ID: 30572262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the neutron leakage from a dedicated intraoperative radiation therapy electron linear accelerator and a conventional linear accelerator for 9, 12, 15(16), and 18(20) MeV electron energies.
    Jaradat AK; Biggs PJ
    Med Phys; 2008 May; 35(5):1711-7. PubMed ID: 18561646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How much should you worry about contaminant neutrons in spatially fractionated grid radiation therapy?
    Mahmoudi F; Mohammadi N; Haghighi M; Alirezaei Z; Jabbari I; Chegeni N; Elmtalab S; Vega-Carrillo HR; Kazemian A; Geraily G; Karimi AH
    PLoS One; 2023; 18(1):e0280433. PubMed ID: 36638131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effectiveness of steel for shielding photoneutrons produced in medical linear accelerators: A Monte Carlo particle transport study.
    Moghaddasi L; Colyer C
    Phys Med; 2022 Jun; 98():53-62. PubMed ID: 35490530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of photoneutron dose equivalent in 10 MV and 15 MV beams for wedge and open fields in the Elekta Versa HD linac.
    Khilafath HRAS; Ganesan B; Sekar N; Mohapatra D; Mahadevan P; Vellingiri J; Prakasarao A; Singaravelu G
    Appl Radiat Isot; 2022 Oct; 188():110363. PubMed ID: 35863145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoneutron production of a Siemens Primus linear accelerator studied by Monte Carlo methods and a paired magnesium and boron coated magnesium ionization chamber system.
    Becker J; Brunckhorst E; Schmidt R
    Phys Med Biol; 2007 Nov; 52(21):6375-87. PubMed ID: 17951849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.