These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 26737882)

  • 1. A microfabricated coil for implantable applications of magnetic spinal cord stimulation.
    Yu-Min Fu ; Che-Yu Chen ; Xin-Hong Qian ; Yu-Ting Cheng ; Chung-Yu Wu ; Jui-Sheng Sun ; Chien-Chun Huang ; Chao-Kai Hu
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6912-5. PubMed ID: 26737882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power and signal transmission protocol for a contactless subdural spinal cord stimulation device.
    Song SH; Gillies GT; Howard MA; Kuhnley B; Utz M
    Biomed Microdevices; 2013 Feb; 15(1):27-36. PubMed ID: 22892642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signal-to-noise ratio comparison of phased-array vs. implantable coil for rat spinal cord MRI.
    Yung AC; Kozlowski P
    Magn Reson Imaging; 2007 Oct; 25(8):1215-21. PubMed ID: 17905249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic coil stimulation of the spinal cord in the dog. Effect of removal of bony structure on eddy current.
    Machida M; Kimura J; Yamada T; Yarita M
    Spine (Phila Pa 1976); 1992 Nov; 17(11):1405-8. PubMed ID: 1462218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of spinal cord stimulation profiles from intra- and extradural electrode arrangements by finite element modelling.
    Huang Q; Oya H; Flouty OE; Reddy CG; Howard MA; Gillies GT; Utz M
    Med Biol Eng Comput; 2014 Jun; 52(6):531-8. PubMed ID: 24771203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toroidal coil models for transcutaneous magnetic stimulation of nerves.
    Carbunaru R; Durand DM
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):434-41. PubMed ID: 11322531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Method for nonlinear characterization of radio frequency coils made of high temperature superconducting material in view of magnetic resonance imaging applications.
    Girard O; Ginefri JC; Poirier-Quinot M; Darrasse L
    Rev Sci Instrum; 2007 Dec; 78(12):124703. PubMed ID: 18163742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic lumbosacral motor root stimulation with a flat, large round coil.
    Matsumoto H; Octaviana F; Hanajima R; Terao Y; Yugeta A; Hamada M; Inomata-Terada S; Nakatani-Enomoto S; Tsuji S; Ugawa Y
    Clin Neurophysiol; 2009 Apr; 120(4):770-5. PubMed ID: 19231278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Magnetic Stimulation of Rat Sciatic Nerve With Centimeter- and Millimeter-Scale Solenoid Coils.
    Kagan ZB; RamRakhyani AK; Lazzi G; Normann RA; Warren DJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Nov; 24(11):1138-1147. PubMed ID: 27019496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance microscopy of spinal cord injury in mouse using a miniaturized implantable RF coil.
    Bilgen M
    J Neurosci Methods; 2007 Jan; 159(1):93-7. PubMed ID: 16890294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfabricated atomic vapor cell arrays for magnetic field measurements.
    Woetzel S; Schultze V; Ijsselsteijn R; Schulz T; Anders S; Stolz R; Meyer HG
    Rev Sci Instrum; 2011 Mar; 82(3):033111. PubMed ID: 21456722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
    Lee H; Xu Q; Shellock FG; Bergsneider M; Judy JW
    Biomed Microdevices; 2014 Feb; 16(1):153-61. PubMed ID: 24077662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined simulation of a micro permanent magnetic linear contactless displacement sensor.
    Gao J; Müller WF; Greiner F; Eicher D; Weiland T; Schlaak HF
    Sensors (Basel); 2010; 10(9):8424-36. PubMed ID: 22163663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensing magnetic flux density of artificial neurons with a MEMS device.
    Tapia JA; Herrera-May AL; García-Ramírez PJ; Martinez-Castillo J; Figueras E; Flores A; Manjarrez E
    Biomed Microdevices; 2011 Apr; 13(2):303-13. PubMed ID: 21113665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Stimulation of the Spinal Cord: Evaluating the Characteristics of an Appropriate Stimulator.
    Cretu M; Darabant A; Ciupa RV
    Artif Organs; 2015 Oct; 39(10):841-8. PubMed ID: 26471134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved coil design for functional magnetic stimulation of expiratory muscles.
    Hsiao IN; Lin VW
    IEEE Trans Biomed Eng; 2001 Jun; 48(6):684-94. PubMed ID: 11396598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic multi-channel TMS with reconfigurable coil.
    Jiang R; Jansen BH; Sheth BR; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):370-5. PubMed ID: 23193321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Fabrication, Implantation, and Stability of Intraspinal Microwire Arrays in the Spinal Cord of Cat and Rat.
    Bamford JA; Marc Lebel R; Parseyan K; Mushahwar VK
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):287-296. PubMed ID: 28113558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic stimulation of the spine to produce lower extremity EMG responses. Significance of coil position and the presence of bone.
    Konrad PE; Owen JH; Bridwell KH
    Spine (Phila Pa 1976); 1994 Dec; 19(24):2812-8. PubMed ID: 7899984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Developments in Spinal Cord Stimulation.
    Zeidman SM
    Spine (Phila Pa 1976); 2017 Apr; 42 Suppl 7():S23. PubMed ID: 28296702
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.