BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 26737954)

  • 1. Motion compensation in a tomographic ultrasound imaging system: Toward volumetric scans of a limb for prosthetic socket design.
    Ranger BJ; Feigin M; Pestrov N; Zhang X; Lempitsky V; Herr HM; Anthony BW
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():7204-7. PubMed ID: 26737954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound imaging in lower limb prosthetics.
    Douglas T; Solomonidis S; Sandham W; Spence W
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):11-21. PubMed ID: 12173735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Ultrasound Imaging of Residual Limbs With Camera-Based Motion Compensation.
    Ranger BJ; Feigin M; Zhang X; Moerman KM; Herr H; Anthony BW
    IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):207-217. PubMed ID: 30676967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hardware and software considerations in 3D ultrasound imaging of a residual limb.
    He P
    Biomed Sci Instrum; 1997; 33():257-62. PubMed ID: 9731368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Marker-based method to measure movement between the residual limb and a transtibial prosthetic socket.
    Childers WL; Siebert S
    Prosthet Orthot Int; 2016 Dec; 40(6):720-728. PubMed ID: 26527758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-of-the-art methods for geometric and biomechanical assessments of residual limbs: a review.
    Zheng YP; Mak AF; Leung AK
    J Rehabil Res Dev; 2001; 38(5):487-504. PubMed ID: 11732827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: a review.
    Mak AF; Zhang M; Boone DA
    J Rehabil Res Dev; 2001; 38(2):161-74. PubMed ID: 11392649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Axial bone-socket displacement for persons with a traumatic transtibial amputation: The effect of elevated vacuum suspension at progressive body-weight loads.
    Darter BJ; Sinitski K; Wilken JM
    Prosthet Orthot Int; 2016 Oct; 40(5):552-7. PubMed ID: 26423107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound study of the motion of the residual femur within a trans-femoral socket during gait.
    Convery P; Murray KD
    Prosthet Orthot Int; 2000 Dec; 24(3):226-32. PubMed ID: 11195358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasound study of the motion of the residual femur within a trans-femoral socket during daily living activities other than gait.
    Convery P; Murray KD
    Prosthet Orthot Int; 2001 Dec; 25(3):220-7. PubMed ID: 11860096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Techniques for Interface Stress Measurements within Prosthetic Sockets of Transtibial Amputees: A Review of the Past 50 Years of Research.
    Al-Fakih EA; Abu Osman NA; Mahmad Adikan FR
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Use of Non-Image-Based Ultrasound to Detect the Position of the Residual Femur within a Stump.
    Chong SY; Röhrle O
    PLoS One; 2016; 11(10):e0164583. PubMed ID: 27764120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of amputee socket-stump-residual bone kinematics during strenuous activities using Dynamic Roentgen Stereogrammetric Analysis.
    Papaioannou G; Mitrogiannis C; Nianios G; Fiedler G
    J Biomech; 2010 Mar; 43(5):871-8. PubMed ID: 20047746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A preliminary investigation into the development of 3-D printing of prosthetic sockets.
    Herbert N; Simpson D; Spence WD; Ion W
    J Rehabil Res Dev; 2005; 42(2):141-6. PubMed ID: 15944878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An investigation on effects of amputee's physiological parameters on maximum pressure developed at the prosthetic socket interface using artificial neural network.
    Nayak C; Singh A; Chaudhary H; Unune DR
    Technol Health Care; 2017 Oct; 25(5):969-979. PubMed ID: 28854522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Framework for Measuring the Time-Varying Shape and Full-Field Deformation of Residual Limbs Using 3-D Digital Image Correlation.
    Solav D; Moerman KM; Jaeger AM; Herr HM
    IEEE Trans Biomed Eng; 2019 Oct; 66(10):2740-2752. PubMed ID: 30676943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Practical Approach for Evaluation of Socket Pistoning for Lower Limb Amputees.
    Vempala V; Liu M; Kamper D; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3938-3941. PubMed ID: 30441222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transtibial prosthetic socket pistoning: static evaluation of Seal-In(®) X5 and Dermo(®) Liner using motion analysis system.
    Gholizadeh H; Osman NA; Kamyab M; Eshraghi A; Abas WA; Azam MN
    Clin Biomech (Bristol, Avon); 2012 Jan; 27(1):34-9. PubMed ID: 21794965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the influence of cyclic loading on a laser sintered transtibial prosthetic socket using Digital Image Correlation (DIC).
    Saey T; Muraru L; Raeve E; Cuppens K; Balcaen R; Creylman V
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5382-5385. PubMed ID: 31947072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.