These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 26737968)

  • 21. Correlation analysis of electromyogram signals for multiuser myoelectric interfaces.
    Khushaba RN
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jul; 22(4):745-55. PubMed ID: 24760933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conditioning and sampling issues of EMG signals in motion recognition of multifunctional myoelectric prostheses.
    Li G; Li Y; Yu L; Geng Y
    Ann Biomed Eng; 2011 Jun; 39(6):1779-87. PubMed ID: 21293972
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees.
    Al-Timemy AH; Bugmann G; Escudero J
    Sensors (Basel); 2018 Jul; 18(8):. PubMed ID: 30042296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of multiple dynamic factors on the performance of myoelectric pattern recognition.
    Khushaba RN; Al-Timemy A; Kodagoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1679-82. PubMed ID: 26736599
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards limb position invariant myoelectric pattern recognition using time-dependent spectral features.
    Khushaba RN; Takruri M; Miro JV; Kodagoda S
    Neural Netw; 2014 Jul; 55():42-58. PubMed ID: 24721224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Boosting training for myoelectric pattern recognition using Mixed-LDA.
    Liu J; Sheng X; Zhang D; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():14-7. PubMed ID: 25569885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of time on EMG classification of hand motions in able-bodied and transradial amputees.
    Waris A; Niazi IK; Jamil M; Gilani O; Englehart K; Jensen W; Shafique M; Kamavuako EN
    J Electromyogr Kinesiol; 2018 Jun; 40():72-80. PubMed ID: 29689443
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamic time warping for reducing the effect of force variation on myoelectric control of hand prostheses.
    Powar OS; Chemmangat K
    J Electromyogr Kinesiol; 2019 Oct; 48():152-160. PubMed ID: 31357113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Towards resolving the co-existing impacts of multiple dynamic factors on the performance of EMG-pattern recognition based prostheses.
    Asogbon MG; Samuel OW; Geng Y; Oluwagbemi O; Ning J; Chen S; Ganesh N; Feng P; Li G
    Comput Methods Programs Biomed; 2020 Feb; 184():105278. PubMed ID: 31901634
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selecting the optimal movement subset with different pattern recognition based EMG control algorithms.
    Al-Timemy AH; Khushaba RN; Escudero J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():315-318. PubMed ID: 28268340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Can transcranial direct current stimulation enhance performance of myoelectric control for multifunctional prosthesis?
    Pan L; Zhang D; Duan R; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3566-9. PubMed ID: 25570761
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Principal components analysis preprocessing for improved classification accuracies in pattern-recognition-based myoelectric control.
    Hargrove LJ; Li G; Englehart KB; Hudgins BS
    IEEE Trans Biomed Eng; 2009 May; 56(5):1407-14. PubMed ID: 19473932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new approach to mitigate the effect of force variation on pattern recognition for myoelectric control.
    Xiangxin Li ; Rui Xu ; Samuel OW; Lan Tian ; Haiqing Zou ; Xiufeng Zhang ; Shixiong Chen ; Peng Fang ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1684-1687. PubMed ID: 28268651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved hand prostheses control for transradial amputees based on hybrid of voice recognition and electromyography.
    Alkhafaf OS; Wali MK; Al-Timemy AH
    Int J Artif Organs; 2021 Jul; 44(7):509-517. PubMed ID: 33287634
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Confidence-based rejection for improved pattern recognition myoelectric control.
    Scheme EJ; Hudgins BS; Englehart KB
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1563-70. PubMed ID: 23322756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature Extraction and Selection for Myoelectric Control Based on Wearable EMG Sensors.
    Phinyomark A; N Khushaba R; Scheme E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual Window Pattern Recognition Classifier for Improved Partial-Hand Prosthesis Control.
    Earley EJ; Hargrove LJ; Kuiken TA
    Front Neurosci; 2016; 10():58. PubMed ID: 26941599
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.