These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26737968)

  • 41. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition.
    Zhang X; Huang H
    J Neuroeng Rehabil; 2015 Feb; 12():18. PubMed ID: 25888946
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.
    Teh Y; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1605-1613. PubMed ID: 32396094
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resolving the limb position effect in myoelectric pattern recognition.
    Fougner A; Scheme E; Chan AD; Englehart K; Stavdahl O
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):644-51. PubMed ID: 21846608
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Swarm-wavelet based extreme learning machine for finger movement classification on transradial amputees.
    Anam K; Al-Jumaily A
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4192-5. PubMed ID: 25570916
    [TBL] [Abstract][Full Text] [Related]  

  • 45. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control.
    He J; Zhang D; Jiang N; Sheng X; Farina D; Zhu X
    J Neural Eng; 2015 Aug; 12(4):046005. PubMed ID: 26028132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Improving transient state myoelectric signal recognition in hand movement classification using gyroscopes.
    Boschmann A; Nofen B; Platzner M
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6035-8. PubMed ID: 24111115
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cascaded Adaptation Framework for Fast Calibration of Myoelectric Control.
    Zhu X; Liu J; Zhang D; Sheng X; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):254-264. PubMed ID: 27164595
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An Exploration of the Optimal Feature-Classifier Combinations for Transradial Prosthesis Control.
    Douglas F; Gover H; Docherty C; Shields G; Leventi K; Caterina GD
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3187-3190. PubMed ID: 36086134
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protocol for site selection and movement assessment for the myoelectric control of a multi-functional upper-limb prosthesis.
    Al-Timemy AH; Escudero J; Bugmann G; Outram N
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5817-20. PubMed ID: 24111061
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A mechatronics platform to study prosthetic hand control using EMG signals.
    Geethanjali P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):765-71. PubMed ID: 27278475
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Real-time classification of shoulder girdle motions for multifunctional prosthetic hand control: A preliminary study.
    Sharba GK; Wali MK; Ai-Timemy AH
    Int J Artif Organs; 2019 Sep; 42(9):508-515. PubMed ID: 31117860
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of extreme learning machine for classification of individual and combined finger movements using electromyography on amputees and non-amputees.
    Anam K; Al-Jumaily A
    Neural Netw; 2017 Jan; 85():51-68. PubMed ID: 27814466
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of non-training movements on the performance of motion classification in electromyography pattern recognition.
    Li X; Chen S; Zhang H; Zhang X; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2569-72. PubMed ID: 25570515
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prosthesis-guided training of pattern recognition-controlled myoelectric prosthesis.
    Chicoine CL; Simon AM; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1876-9. PubMed ID: 23366279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving Myoelectric Control for Amputees through Transcranial Direct Current Stimulation.
    Pan L; Zhang D; Sheng X; Zhu X
    IEEE Trans Biomed Eng; 2015 Aug; 62(8):1927-36. PubMed ID: 25730820
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An adaptation strategy of using LDA classifier for EMG pattern recognition.
    Zhang H; Zhao Y; Yao F; Xu L; Shang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4267-70. PubMed ID: 24110675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving robustness against electrode shift of high density EMG for myoelectric control through common spatial patterns.
    Pan L; Zhang D; Jiang N; Sheng X; Zhu X
    J Neuroeng Rehabil; 2015 Dec; 12():110. PubMed ID: 26631105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Improving Myoelectric Pattern Recognition Robustness to Electrode Shift by Autoencoder.
    Lv B; Sheng X; Zhu X
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5652-5655. PubMed ID: 30441618
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of Synergy-Based Hand Gesture Recognition Method Against Force Variation for Robust Myoelectric Control.
    Teng Z; Xu G; Liang R; Li M; Zhang S
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2345-2354. PubMed ID: 34727034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.