These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26738126)
1. 3D Riesz-wavelet based Covariance descriptors for texture classification of lung nodule tissue in CT. Cirujeda P; Muller H; Rubin D; Aguilera TA; Loo BW; Diehn M; Binefa X; Depeursinge A Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():7909-12. PubMed ID: 26738126 [TBL] [Abstract][Full Text] [Related]
2. Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine. Madero Orozco H; Vergara Villegas OO; Cruz Sánchez VG; Ochoa Domínguez Hde J; Nandayapa Alfaro Mde J Biomed Eng Online; 2015 Feb; 14():9. PubMed ID: 25888834 [TBL] [Abstract][Full Text] [Related]
3. Predicting adenocarcinoma recurrence using computational texture models of nodule components in lung CT. Depeursinge A; Yanagawa M; Leung AN; Rubin DL Med Phys; 2015 Apr; 42(4):2054-63. PubMed ID: 25832095 [TBL] [Abstract][Full Text] [Related]
4. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Ren Y; Tsai MY; Chen L; Wang J; Li S; Liu Y; Jia X; Shen C Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):287-295. PubMed ID: 31768885 [TBL] [Abstract][Full Text] [Related]
5. Toward precise pulmonary nodule descriptors for nodule type classification. Farag A; Elhabian S; Graham J; Farag A; Falk R Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):626-33. PubMed ID: 20879453 [TBL] [Abstract][Full Text] [Related]
6. A 3-D Riesz-Covariance Texture Model for Prediction of Nodule Recurrence in Lung CT. Cirujeda P; Dicente Cid Y; Muller H; Rubin D; Aguilera TA; Loo BW; Diehn M; Binefa X; Depeursinge A IEEE Trans Med Imaging; 2016 Dec; 35(12):2620-2630. PubMed ID: 27429433 [TBL] [Abstract][Full Text] [Related]
7. Multiscale lung texture signature learning using the Riesz transform. Depeursinge A; Foncubierta-Rodriguez A; Van de Ville D; Müller H Med Image Comput Comput Assist Interv; 2012; 15(Pt 3):517-24. PubMed ID: 23286170 [TBL] [Abstract][Full Text] [Related]
8. Doubling time calculations for lung cancer by three-dimensional computer-aided volumetry: effects of inter-observer differences and nodule characteristics. Koike W; Iwano S; Matsuo K; Kitano M; Kawakami K; Naganawa S J Med Imaging Radiat Oncol; 2014 Feb; 58(1):82-8. PubMed ID: 24304703 [TBL] [Abstract][Full Text] [Related]
9. False positive reduction in pulmonary nodule classification using 3D texture and edge feature in CT images. Wang B; Si S; Zhao H; Zhu H; Dou S Technol Health Care; 2021; 29(6):1071-1088. PubMed ID: 30664518 [TBL] [Abstract][Full Text] [Related]
10. Shape-based computer-aided detection of lung nodules in thoracic CT images. Ye X; Lin X; Dehmeshki J; Slabaugh G; Beddoe G IEEE Trans Biomed Eng; 2009 Jul; 56(7):1810-20. PubMed ID: 19527950 [TBL] [Abstract][Full Text] [Related]
11. Object-constrained meshless deformable algorithm for high speed 3D nonrigid registration between CT and CBCT. Chen T; Kim S; Goyal S; Jabbour S; Zhou J; Rajagopal G; Haffty B; Yue N Med Phys; 2010 Jan; 37(1):197-210. PubMed ID: 20175482 [TBL] [Abstract][Full Text] [Related]
12. Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs. Han G; Liu X; Zheng G; Wang M; Huang S Med Biol Eng Comput; 2018 Dec; 56(12):2201-2212. PubMed ID: 29873026 [TBL] [Abstract][Full Text] [Related]
13. Multistage segmentation model and SVM-ensemble for precise lung nodule detection. Naqi SM; Sharif M; Yasmin M Int J Comput Assist Radiol Surg; 2018 Jul; 13(7):1083-1095. PubMed ID: 29492880 [TBL] [Abstract][Full Text] [Related]
14. Classification of benign and malignant lung nodules from CT images based on hybrid features. Zhang G; Yang Z; Gong L; Jiang S; Wang L Phys Med Biol; 2019 Jun; 64(12):125011. PubMed ID: 31141794 [TBL] [Abstract][Full Text] [Related]
15. Texture classification-based segmentation of lung affected by interstitial pneumonia in high-resolution CT. Korfiatis P; Kalogeropoulou C; Karahaliou A; Kazantzi A; Skiadopoulos S; Costaridou L Med Phys; 2008 Dec; 35(12):5290-302. PubMed ID: 19175088 [TBL] [Abstract][Full Text] [Related]
16. Lung texture classification using locally-oriented Riesz components. Depeursinge A; Foncubierta-Rodriguez A; Van de Ville D; Müller H Med Image Comput Comput Assist Interv; 2011; 14(Pt 3):231-8. PubMed ID: 22003704 [TBL] [Abstract][Full Text] [Related]
17. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box. Ciompi F; de Hoop B; van Riel SJ; Chung K; Scholten ET; Oudkerk M; de Jong PA; Prokop M; van Ginneken B Med Image Anal; 2015 Dec; 26(1):195-202. PubMed ID: 26458112 [TBL] [Abstract][Full Text] [Related]
18. Computer-aided detection of lung nodules using outer surface features. Demir Ö; Yılmaz Çamurcu A Biomed Mater Eng; 2015; 26 Suppl 1():S1213-22. PubMed ID: 26405880 [TBL] [Abstract][Full Text] [Related]
19. Estimation of ground-glass opacity measurement in CT lung images. Zheng Y; Kambhamettu C; Bauer T; Steiner K Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):238-45. PubMed ID: 18982611 [TBL] [Abstract][Full Text] [Related]
20. Lung nodule detection performance in five observers on computed tomography (CT) with adaptive iterative dose reduction using three-dimensional processing (AIDR 3D) in a Japanese multicenter study: Comparison between ultra-low-dose CT and low-dose CT by receiver-operating characteristic analysis. Nagatani Y; Takahashi M; Murata K; Ikeda M; Yamashiro T; Miyara T; Koyama H; Koyama M; Sato Y; Moriya H; Noma S; Tomiyama N; Ohno Y; Murayama S; Eur J Radiol; 2015 Jul; 84(7):1401-12. PubMed ID: 25892051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]