These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 26738174)

  • 1. E3D hand movement velocity reconstruction using power spectral density of EEG signals and neural network.
    Korik A; Siddique N; Sosnik R; Coyle D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():8103-6. PubMed ID: 26738174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D hand motion trajectory prediction from EEG mu and beta bandpower.
    Korik A; Sosnik R; Siddique N; Coyle D
    Prog Brain Res; 2016; 228():71-105. PubMed ID: 27590966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG slow cortical potentials.
    Sosnik R; Ben Zur O
    J Neural Eng; 2020 Feb; 17(1):016065. PubMed ID: 31747655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of hand, elbow and shoulder actual and imagined trajectories in 3D space using EEG current source dipoles.
    Sosnik R; Zheng L
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33752186
    [No Abstract]   [Full Text] [Related]  

  • 5. Decoding Imagined 3D Hand Movement Trajectories From EEG: Evidence to Support the Use of Mu, Beta, and Low Gamma Oscillations.
    Korik A; Sosnik R; Siddique N; Coyle D
    Front Neurosci; 2018; 12():130. PubMed ID: 29615848
    [No Abstract]   [Full Text] [Related]  

  • 6. Adaptive estimation of hand movement trajectory in an EEG based brain-computer interface system.
    Robinson N; Guan C; Vinod AP
    J Neural Eng; 2015 Dec; 12(6):066019. PubMed ID: 26501230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study on a robot arm driven by three-dimensional trajectories predicted from non-invasive neural signals.
    Kim YJ; Park SW; Yeom HG; Bang MS; Kim JS; Chung CK; Kim S
    Biomed Eng Online; 2015 Aug; 14():81. PubMed ID: 26290069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces.
    Lawhern VJ; Solon AJ; Waytowich NR; Gordon SM; Hung CP; Lance BJ
    J Neural Eng; 2018 Oct; 15(5):056013. PubMed ID: 29932424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features.
    Hosseini SM; Shalchyan V
    Front Hum Neurosci; 2022; 16():901285. PubMed ID: 35845243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks.
    Ma X; Qiu S; Du C; Xing J; He H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1903-1906. PubMed ID: 30440769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.
    Robinson N; Vinod AP; Ang KK; Tee KP; Guan CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2123-32. PubMed ID: 23446029
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spiking Neural Networks applied to the classification of motor tasks in EEG signals.
    Virgilio G CD; Sossa A JH; Antelis JM; Falcón LE
    Neural Netw; 2020 Feb; 122():130-143. PubMed ID: 31677441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of Movement Direction From Electroencephalogram During Working Memory Time.
    Fukuda N; Nambu I; Wada Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3107-3110. PubMed ID: 31946545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand.
    Sonkin KM; Stankevich LA; Khomenko JG; Nagornova ZV; Shemyakina NV
    Artif Intell Med; 2015 Feb; 63(2):107-17. PubMed ID: 25547267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An EEG-EMG correlation-based brain-computer interface for hand orthosis supported neuro-rehabilitation.
    Chowdhury A; Raza H; Meena YK; Dutta A; Prasad G
    J Neurosci Methods; 2019 Jan; 312():1-11. PubMed ID: 30452976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstructing Degree of Forearm Rotation from Imagined movements for BCI-based Robot Hand Control.
    Yun YD; Jeong JH; Cho JH; Kim DJ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3014-3017. PubMed ID: 31946523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.