These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26738691)

  • 1. Zero-Point Energy Constraint for Unimolecular Dissociation Reactions. Giving Trajectories Multiple Chances To Dissociate Correctly.
    Paul AK; Hase WL
    J Phys Chem A; 2016 Jan; 120(3):372-8. PubMed ID: 26738691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Post-transition state dynamics for propene ozonolysis: Intramolecular and unimolecular dynamics of molozonide.
    Vayner G; Addepalli SV; Song K; Hase WL
    J Chem Phys; 2006 Jul; 125(1):014317. PubMed ID: 16863308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparisons of classical chemical dynamics simulations of the unimolecular decomposition of classical and quantum microcanonical ensembles.
    Manikandan P; Hase WL
    J Chem Phys; 2012 May; 136(18):184110. PubMed ID: 22583280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trajectory dynamics study of the Ar + CH4 dissociation reaction at high temperatures: the importance of zero-point-energy effects.
    Marques JM; Martínez-Núñez E; Fernandez-Ramos A; Vazquez SA
    J Phys Chem A; 2005 Jun; 109(24):5415-23. PubMed ID: 16839068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zero-point energy conservation in classical trajectory simulations: Application to H
    Lee KLK; Quinn MS; Kolmann SJ; Kable SH; Jordan MJT
    J Chem Phys; 2018 May; 148(19):194113. PubMed ID: 30307216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and computational studies of non-RRKM unimolecular dynamics.
    Lourderaj U; Hase WL
    J Phys Chem A; 2009 Mar; 113(11):2236-53. PubMed ID: 19243125
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct dynamics simulations of the unimolecular dissociation of dioxetane: Probing the non-RRKM dynamics.
    Malpathak S; Ma X; Hase WL
    J Chem Phys; 2018 Apr; 148(16):164309. PubMed ID: 29716233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissociation of 1,1,1-trifluoroethane is an intrinsic RRKM process: classical trajectories and successful master equation modeling.
    Matsugi A
    J Phys Chem A; 2015 Mar; 119(10):1846-58. PubMed ID: 25664485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.
    Zhang J; Xie J; Hase WL
    J Phys Chem A; 2015 Dec; 119(50):12517-25. PubMed ID: 26473337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential energy surface and unimolecular dynamics of stretched n-butane.
    Lourderaj U; McAfee JL; Hase WL
    J Chem Phys; 2008 Sep; 129(9):094701. PubMed ID: 19044880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasiclassical trajectory studies of the O(3P) + CX4(vk = 0, 1) → OXv + CX3(n1n2n3n4) [X = H and D] reactions on an ab initio potential energy surface.
    Czakó G; Liu R; Yang M; Bowman JM; Guo H
    J Phys Chem A; 2013 Aug; 117(30):6409-20. PubMed ID: 23808940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed quantum/classical investigation of the photodissociation of NH3(A) and a practical method for maintaining zero-point energy in classical trajectories.
    Bonhommeau D; Truhlar DG
    J Chem Phys; 2008 Jul; 129(1):014302. PubMed ID: 18624475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is CH
    Jayee B; Malpathak S; Ma X; Hase WL
    J Chem Phys; 2019 Nov; 151(18):184110. PubMed ID: 31731854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a single trajectory to study product energy partitioning in unimolecular dissociation: mass effects for halogenated alkanes.
    Sun L; Park K; Song K; Setser DW; Hase WL
    J Chem Phys; 2006 Feb; 124(6):64313. PubMed ID: 16483213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Hamiltonian molecular dynamics: semiclassical trajectories with improved maintenance of zero point energy.
    Shu Y; Dong SS; Parker KA; Bao JL; Zhang L; Truhlar DG
    Phys Chem Chem Phys; 2018 Dec; 20(48):30209-30218. PubMed ID: 30489584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Initial Conditions Sampling on Surface Hopping Simulations in the Ultrashort and Picosecond Time Range. Azomethane Photodissociation as a Case Study.
    Pieroni C; Becuzzi F; Creatini L; Granucci G; Persico M
    J Chem Theory Comput; 2023 May; 19(9):2430-2445. PubMed ID: 37071389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Dynamics Simulations of Benzene Dimer Dissociation.
    Ma X; Paul AK; Hase WL
    J Phys Chem A; 2015 Jun; 119(25):6631-40. PubMed ID: 26024045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Collisional energy transfer in unimolecular reactions: direct classical trajectories for CH4 <--> CH3 + H in helium.
    Jasper AW; Miller JA
    J Phys Chem A; 2009 May; 113(19):5612-9. PubMed ID: 19419224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Hessian-Free Method to Prevent Zero-Point Energy Leakage in Classical Trajectories.
    Mukherjee S; Barbatti M
    J Chem Theory Comput; 2022 Jul; 18(7):4109-4116. PubMed ID: 35679615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamically biased statistical model for the ortho/para conversion in the H2 + H3+ → H3+ + H2 reaction.
    Gómez-Carrasco S; González-Sánchez L; Aguado A; Sanz-Sanz C; Zanchet A; Roncero O
    J Chem Phys; 2012 Sep; 137(9):094303. PubMed ID: 22957565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.