BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 26739332)

  • 21. Identifying hub genes and potential mechanisms associated with senescence in human annulus cells by gene expression profiling and bioinformatics analysis.
    Liu C; Chen N; Huang K; Jiang M; Liang H; Sun Z; Tian J; Wang D
    Mol Med Rep; 2018 Mar; 17(3):3465-3472. PubMed ID: 29286093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genes related to inflammation and bone loss process in periodontitis suggested by bioinformatics methods.
    Song L; Yao J; He Z; Xu B
    BMC Oral Health; 2015 Sep; 15():105. PubMed ID: 26334995
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Key Transcription Factors Associated with Lung Squamous Cell Carcinoma.
    Zhang F; Chen X; Wei K; Liu D; Xu X; Zhang X; Shi H
    Med Sci Monit; 2017 Jan; 23():172-206. PubMed ID: 28081052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinformatics analysis of molecular mechanisms involved in intervertebral disc degeneration induced by TNF-α and IL-1β.
    Xu F; Gao F; Liu Y; Wang Z; Zhuang X; Qu Z; Ma H; Liu Y; Fu C; Zhang Q; Duan X
    Mol Med Rep; 2016 Mar; 13(3):2925-31. PubMed ID: 26847698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of candidate target genes of pituitary adenomas based on the DNA microarray.
    Zhou W; Ma CX; Xing YZ; Yan ZY
    Mol Med Rep; 2016 Mar; 13(3):2182-6. PubMed ID: 26782791
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioinformatics analysis and experimental validation of TTK as a biomarker for prognosis in non-small cell lung cancer.
    Chen J; Wu R; Xuan Y; Jiang M; Zeng Y
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 32969465
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of key genes and crucial modules associated with coronary artery disease by bioinformatics analysis.
    Zhang X; Cheng X; Liu H; Zheng C; Rao K; Fang Y; Zhou H; Xiong S
    Int J Mol Med; 2014 Sep; 34(3):863-9. PubMed ID: 24969630
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cysteine-rich 61-associated gene expression profile alterations in human glioma cells.
    Wang R; Wei B; Wei J; Tian Y; Du C
    Mol Med Rep; 2017 Oct; 16(4):5561-5567. PubMed ID: 28849002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of key pathways and genes in Barrett's esophagus using integrated bioinformatics methods.
    Zhang C; Shen Y; Wang J; Zhou M; Chen Y
    Mol Med Rep; 2018 Feb; 17(2):3069-3077. PubMed ID: 29257318
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioinformatics analysis of transcription profiling of solid pseudopapillary neoplasm of the pancreas.
    Zhang Y; Han X; Wu H; Zhou Y
    Mol Med Rep; 2017 Aug; 16(2):1635-1642. PubMed ID: 28627654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioinformatics analyses of the differences between lung adenocarcinoma and squamous cell carcinoma using The Cancer Genome Atlas expression data.
    Sun F; Yang X; Jin Y; Chen L; Wang L; Shi M; Zhan C; Shi Y; Wang Q
    Mol Med Rep; 2017 Jul; 16(1):609-616. PubMed ID: 28560415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.
    Bi D; Ning H; Liu S; Que X; Ding K
    Comput Biol Chem; 2015 Jun; 56():71-83. PubMed ID: 25889321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of molecular targets for esophageal carcinoma diagnosis using miRNA-seq and RNA-seq data from The Cancer Genome Atlas: a study of 187 cases.
    Zeng JH; Xiong DD; Pang YY; Zhang Y; Tang RX; Luo DZ; Chen G
    Oncotarget; 2017 May; 8(22):35681-35699. PubMed ID: 28415685
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-efficient Screening Method for Identification of Key Genes in Breast Cancer Through Microarray and Bioinformatics.
    Liu Z; Liang G; Tan L; Su AN; Jiang W; Gong C
    Anticancer Res; 2017 Aug; 37(8):4329-4335. PubMed ID: 28739725
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detailed Analysis of Molecular Mechanisms in Primary and Metastatic Melanoma.
    Xu Y; Mu Y; Wang L; Zhang X
    J Comput Biol; 2020 Jan; 27(1):9-19. PubMed ID: 31424282
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of the differentially expressed genes associated with familial combined hyperlipidemia using bioinformatics analysis.
    Luo X; Yu C; Fu C; Shi W; Wang X; Zeng C; Wang H
    Mol Med Rep; 2015 Jun; 11(6):4032-8. PubMed ID: 25625967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated analysis reveals candidate genes and transcription factors in lung adenocarcinoma.
    Chen B; Gao S; Ji C; Song G
    Mol Med Rep; 2017 Dec; 16(6):8371-8379. PubMed ID: 28983631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Further insight into molecular mechanism underlying thoracic spinal cord injury using bioinformatics methods.
    Wang W; Liu R; Xu Z; Niu X; Mao Z; Meng Q; Cao X
    Mol Med Rep; 2015 Dec; 12(6):7851-8. PubMed ID: 26497545
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening critical genes associated with malignant glioma using bioinformatics analysis.
    Xu Y; Wang J; Xu Y; Xiao H; Li J; Wang Z
    Mol Med Rep; 2017 Nov; 16(5):6580-6589. PubMed ID: 28901452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Systematic analysis of mRNA expression profiles in NSCLC cell lines to screen metastasis-related genes.
    Liu Y; Liu L; Yu T; Lin HC; Chu D; Deng W; Yan MX; Li J; Yao M
    Mol Med Rep; 2016 Dec; 14(6):5093-5103. PubMed ID: 27840927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.