These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 26739686)

  • 21. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot.
    McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL
    Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quadrupedal locomotion in squirrel monkeys (Cebidae: Saimiri sciureus): a cineradiographic study of limb kinematics and related substrate reaction forces.
    Schmidt M
    Am J Phys Anthropol; 2005 Oct; 128(2):359-70. PubMed ID: 15838834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Symmetrical gaits of Cebus apella: implications for the functional significance of diagonal sequence gait in primates.
    Wallace IJ; Demes B
    J Hum Evol; 2008 Jun; 54(6):783-94. PubMed ID: 18155128
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The gaits of primates: center of mass mechanics in walking, cantering and galloping ring-tailed lemurs, Lemur catta.
    O'Neill MC; Schmitt D
    J Exp Biol; 2012 May; 215(Pt 10):1728-39. PubMed ID: 22539740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fore-aft ground force adaptations to induced forelimb lameness in walking and trotting dogs.
    Abdelhadi J; Wefstaedt P; Nolte I; Schilling N
    PLoS One; 2012; 7(12):e52202. PubMed ID: 23300614
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of substrate texture on the mechanics of quadrupedal arboreal locomotion in the gray short-tailed opossum (Monodelphis domestica).
    Lammers AR
    J Exp Zool A Ecol Genet Physiol; 2009 Dec; 311(10):813-23. PubMed ID: 19691059
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of mass distribution on the mechanics of level trotting in dogs.
    Lee DV; Stakebake EF; Walter RM; Carrier DR
    J Exp Biol; 2004 Apr; 207(Pt 10):1715-28. PubMed ID: 15073204
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stability, limb coordination and substrate type: the ecorelevance of gait sequence pattern in primates.
    Stevens NJ
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):953-63. PubMed ID: 17029277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A suspensory way of life: Integrating locomotion, postures, limb movements, and forces in two-toed sloths Choloepus didactylus (Megalonychidae, Folivora, Pilosa).
    Granatosky MC; Karantanis NE; Rychlik L; Youlatos D
    J Exp Zool A Ecol Integr Physiol; 2018 Dec; 329(10):570-588. PubMed ID: 30129260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brief communication: Forelimb compliance in arboreal and terrestrial opossums.
    Schmitt D; Gruss LT; Lemelin P
    Am J Phys Anthropol; 2010 Jan; 141(1):142-6. PubMed ID: 19902451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-limb force data for two lemur species while vertically clinging.
    Johnson LE; Hanna J; Schmitt D
    Am J Phys Anthropol; 2015 Nov; 158(3):463-74. PubMed ID: 26174130
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of spatiotemporal gait characteristics between vertical climbing and horizontal walking in primates.
    Granatosky MC; Schmitt D; Hanna J
    J Exp Biol; 2019 Jan; 222(Pt 2):. PubMed ID: 30510117
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolutionary implications of the unusual walking mechanics of the common marmoset (C. jacchus).
    Schmitt D
    Am J Phys Anthropol; 2003 Sep; 122(1):28-37. PubMed ID: 12923902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ground reaction force adaptations to tripedal locomotion in dogs.
    Fuchs A; Goldner B; Nolte I; Schilling N
    Vet J; 2014 Sep; 201(3):307-15. PubMed ID: 24881509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gait-specific metabolic costs and preferred speeds in ring-tailed lemurs (Lemur catta), with implications for the scaling of locomotor costs.
    O'Neill MC
    Am J Phys Anthropol; 2012 Nov; 149(3):356-64. PubMed ID: 22976581
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Do forelimb shape and peak forces co-vary in strepsirrhines?
    Fabre AC; Granatosky MC; Hanna JB; Schmitt D
    Am J Phys Anthropol; 2018 Nov; 167(3):602-614. PubMed ID: 30159895
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mediolateral reaction forces and forelimb anatomy in quadrupedal primates: implications for interpreting locomotor behavior in fossil primates.
    Schmitt D
    J Hum Evol; 2003 Jan; 44(1):47-58. PubMed ID: 12604303
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Body mass distribution and gait mechanics in fat-tailed dwarf lemurs (Cheirogaleus medius) and patas monkeys (Erythrocebus patas).
    Young JW; Patel BA; Stevens NJ
    J Hum Evol; 2007 Jul; 53(1):26-40. PubMed ID: 17512970
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus.
    Nyakatura JA; Petrovitch A; Fischer MS
    Zoology (Jena); 2010 Aug; 113(4):221-34. PubMed ID: 20637572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hip extensor EMG and forelimb/hind limb weight support asymmetry in primate quadrupeds.
    Larson SG; Stern JT
    Am J Phys Anthropol; 2009 Mar; 138(3):343-55. PubMed ID: 18924163
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.