BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26739691)

  • 1. Morphometric analysis of young petiole galls on the narrow-leaf cottonwood, Populus angustifolia, by the sugarbeet root aphid, Pemphigus betae.
    Richardson RA; Body M; Warmund MR; Schultz JC; Appel HM
    Protoplasma; 2017 Jan; 254(1):203-216. PubMed ID: 26739691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A genetic basis for the manipulation of sink-source relationships by the galling aphid Pemphigus batae.
    Compson ZG; Larson KC; Zinkgraf MS; Whitham TG
    Oecologia; 2011 Nov; 167(3):711-21. PubMed ID: 21667296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A geographic mosaic of trophic interactions and selection: trees, aphids and birds.
    Smith DS; Bailey JK; Shuster SM; Whitham TG
    J Evol Biol; 2011 Feb; 24(2):422-9. PubMed ID: 21091573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differences in Monoterpene Biosynthesis and Accumulation in Pistacia palaestina Leaves and Aphid-Induced Galls.
    Rand K; Bar E; Ari MB; Davidovich-Rikanati R; Dudareva N; Inbar M; Lewinsohn E
    J Chem Ecol; 2017 Feb; 43(2):143-152. PubMed ID: 28108840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in Eastern cottonwood (Populus deltoides Bartr.) phloem sap content caused by leaf development may affect feeding site selection behavior of the aphid, Chaitophorous populicola Thomas (Homoptera: Aphididae).
    Gould GG; Jones CG; Rifleman P; Perez A; Coleman JS
    Environ Entomol; 2007 Oct; 36(5):1212-25. PubMed ID: 18284747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic variation in NIN1 and C/VIF1 genes is significantly associated with Populus angustifolia resistance to a galling herbivore, Pemphigus betae.
    Zinkgraf MS; Meneses N; Whitham TG; Allan GJ
    J Insect Physiol; 2016 Jan; 84():50-59. PubMed ID: 26518288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of leaflet age in anatomy and possible adaptive values of the midrib gall of Copaifera langsdorffii (Fabaceae: Caesalpinioideae).
    de Oliveira DC; Isaias RM
    Rev Biol Trop; 2009; 57(1-2):293-302. PubMed ID: 19637708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel family of secreted insect proteins linked to plant gall development.
    Korgaonkar A; Han C; Lemire AL; Siwanowicz I; Bennouna D; Kopec RE; Andolfatto P; Shigenobu S; Stern DL
    Curr Biol; 2021 May; 31(9):1836-1849.e12. PubMed ID: 33657407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separating ontogenetic and environmental determination of resistance to herbivory in cottonwood.
    Holeski LM; Kearsley MJ; Whitham TG
    Ecology; 2009 Nov; 90(11):2969-73. PubMed ID: 19967853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia.
    Inbar M; Wink M; Wool D
    Mol Phylogenet Evol; 2004 Aug; 32(2):504-11. PubMed ID: 15223033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of host plant cells and tissues by gall-inducing insects and adaptive strategies used by different feeding guilds.
    Oliveira DC; Isaias RMS; Fernandes GW; Ferreira BG; Carneiro RGS; Fuzaro L
    J Insect Physiol; 2016 Jan; 84():103-113. PubMed ID: 26620152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary relationships of Pemphigus and allied genera (Hemiptera: Aphididae: Eriosomatinae) and their primary endosymbiont, Buchnera aphidicola.
    Liu L; Li XY; Huang XL; Qiao GX
    Insect Sci; 2014 Jun; 21(3):301-12. PubMed ID: 24482319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphogenesis of galls induced by Baccharopelma dracunculifoliae (Hemiptera: Psyllidae) on Baccharis dracunculifolia (Asteraceae) leaves.
    Arduin M; Fernandes GW; Kraus JE
    Braz J Biol; 2005 Nov; 65(4):559-71. PubMed ID: 16532179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-Temperature X-ray Microanalysis Sheds New Light on Mineral Nutrition Aspects of Insect Leaf Galling.
    Fernando DR; Green PT; Marshall AT
    Microsc Microanal; 2024 Jul; 30(3):607-618. PubMed ID: 38323481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clonal mixing in the soldier-producing aphid Pemphigus spyrothecae (Hemiptera: Aphididae).
    Johnson PC; Whitfield JA; Foster WA; Amos W
    Mol Ecol; 2002 Aug; 11(8):1525-31. PubMed ID: 12144671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental pathway from leaves to galls induced by a sap-feeding insect on Schinus polygamus (Cav.) Cabrera (Anacardiaceae).
    Dias GG; Ferreira BG; Moreira GR; Isaias RM
    An Acad Bras Cienc; 2013 Mar; 85(1):187-200. PubMed ID: 23538957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hemiptera-induced galls of Sapium glandulosum have histological and cytological compartmentalization created with a large amount of carbohydrate.
    Rosa LMP; Silva MS; da Silva Carneiro RG; Machado M; Kuster VC
    Protoplasma; 2024 May; 261(3):593-606. PubMed ID: 38195894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in clonal poplar leaf chemistry caused by stem galls alter herbivory and leaf litter decomposition.
    Künkler N; Brandl R; Brändle M
    PLoS One; 2013; 8(11):e79994. PubMed ID: 24260333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis.
    Takei M; Ito S; Tanaka K; Ishige T; Suzuki Y
    Biosci Biotechnol Biochem; 2017 Jun; 81(6):1069-1077. PubMed ID: 28164745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.