BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26739993)

  • 21. Bioreductive deposition of highly dispersed Ag nanoparticles on carbon nanotubes with enhanced catalytic degradation for 4-nitrophenol assisted by Shewanella oneidensis MR-1.
    Song X; Shi X
    Environ Sci Pollut Res Int; 2017 Jan; 24(3):3038-3044. PubMed ID: 27854056
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlled growth and catalytic activity of gold monolayer protected clusters in presence of borohydride salts.
    Dasog M; Hou W; Scott RW
    Chem Commun (Camb); 2011 Aug; 47(30):8569-71. PubMed ID: 21706115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties.
    Chen M; Kang H; Gong Y; Guo J; Zhang H; Liu R
    ACS Appl Mater Interfaces; 2015 Oct; 7(39):21717-26. PubMed ID: 26357993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction.
    Saha S; Pal A; Kundu S; Basu S; Pal T
    Langmuir; 2010 Feb; 26(4):2885-93. PubMed ID: 19957940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel magnetic Fe@Au core-shell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds.
    Gupta VK; Atar N; Yola ML; Üstündağ Z; Uzun L
    Water Res; 2014 Jan; 48():210-7. PubMed ID: 24112627
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity.
    Sen IK; Maity K; Islam SS
    Carbohydr Polym; 2013 Jan; 91(2):518-28. PubMed ID: 23121940
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B.
    Bhargava A; Jain N; Khan MA; Pareek V; Dilip RV; Panwar J
    J Environ Manage; 2016 Dec; 183():22-32. PubMed ID: 27567934
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water- and organo-dispersible gold nanoparticles supported by using ammonium salts of hyperbranched polystyrene: preparation and catalysis.
    Gao L; Nishikata T; Kojima K; Chikama K; Nagashima H
    Chem Asian J; 2013 Dec; 8(12):3152-63. PubMed ID: 24115377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation and catalytic activity of spherical composites with surfaces coated with gold nanoparticles.
    Chen X; Zhao D; An Y; Zhang Y; Cheng J; Wang B; Shi L
    J Colloid Interface Sci; 2008 Jun; 322(2):414-20. PubMed ID: 18440011
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafine Au and Ag Nanoparticles Synthesized from Self-Assembled Peptide Fibers and Their Excellent Catalytic Activity.
    Xu W; Hong Y; Hu Y; Hao J; Song A
    Chemphyschem; 2016 Jul; 17(14):2157-63. PubMed ID: 27028550
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of gold nanoparticles biosynthesized by cell-free extracts of Labrys, Trichosporon montevideense, and Aspergillus.
    Shen W; Qu Y; Li X; Pei X; You S; Yin Q; Wang J; Ma Q
    Environ Sci Pollut Res Int; 2018 May; 25(14):13626-13632. PubMed ID: 29500590
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.
    Premkumar T; Geckeler KE
    Chem Asian J; 2010 Dec; 5(12):2468-76. PubMed ID: 20848633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel biogenic gold nanoparticles stabilized on poly(styrene-co-maleic anhydride) as an effective material for reduction of nitrophenols and colorimetric detection of Pb(II).
    Nguyen THA; Le TTV; Huynh BA; Nguyen NV; Le VT; Doan VD; Tran VA; Nguyen AT; Cao XT; Vasseghian Y
    Environ Res; 2022 Sep; 212(Pt B):113281. PubMed ID: 35461847
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green synthesis of palladium nanoparticles mediated by black tea leaves (Camellia sinensis) extract: Catalytic activity in the reduction of 4-nitrophenol and Suzuki-Miyaura coupling reaction under ligand-free conditions.
    Lebaschi S; Hekmati M; Veisi H
    J Colloid Interface Sci; 2017 Jan; 485():223-231. PubMed ID: 27665075
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity.
    Aswathy Aromal S; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():1-5. PubMed ID: 22743607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization and catalytic activity of gold nanoparticles synthesized using ayurvedic arishtams.
    Aromal SA; Babu KV; Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Oct; 96():1025-30. PubMed ID: 22954810
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis.
    Meng Y; Cai L; Xu X; Zhang L
    Int J Biol Macromol; 2018 Jul; 113():240-247. PubMed ID: 29476855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis of Pd and Au as nanoparticles by a marine bacterium Bacillus sp. GP and their enhanced catalytic performance using metal oxides for 4-nitrophenol reduction.
    Zhang H; Hu X
    Enzyme Microb Technol; 2018 Jun; 113():59-66. PubMed ID: 29602388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous Au
    Mora-Tamez L; Esquivel-Peña V; Ocampo AL; Rodríguez de San Miguel E; Grande D; de Gyves J
    ChemSusChem; 2017 Apr; 10(7):1482-1493. PubMed ID: 28063203
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Size, composition, and surface capping-dependent catalytic activity of spherical gold nanoparticles.
    Yuan X; Ge L; Zhou H; Tang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Feb; 287(Pt 2):122082. PubMed ID: 36370632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.