BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

588 related articles for article (PubMed ID: 26740249)

  • 41. German travelers' preferences for travel vaccines assessed by a discrete choice experiment.
    Poulos C; Curran D; Anastassopoulou A; De Moerlooze L
    Vaccine; 2018 Feb; 36(7):969-978. PubMed ID: 29338877
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Preferences for vaccines against children's diarrheal illness among mothers in Poland and Hungary.
    Poulos C; Standaert B; Sloesen B; Stryjewska I; Janitsary A; Hauber B
    Vaccine; 2018 Sep; 36(40):6022-6029. PubMed ID: 30150163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Vaccine profile of 4CMenB: a four-component Neisseria meningitidis serogroup B vaccine.
    Esposito S; Principi N
    Expert Rev Vaccines; 2014 Feb; 13(2):193-202. PubMed ID: 24393061
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Attribute nonattendance in COVID-19 vaccine choice: A discrete choice experiment based on Chinese public preference.
    Xiao J; Wang F; Wang M; Ma Z
    Health Expect; 2022 Jun; 25(3):959-970. PubMed ID: 35049117
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Vaccinating adolescents against meningococcal disease in Canada: a cost-effectiveness analysis.
    De Wals P; Coudeville L; Trottier P; Chevat C; Erickson LJ; Nguyen VH
    Vaccine; 2007 Jul; 25(29):5433-40. PubMed ID: 17560695
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cost-effectiveness of conjugate meningococcal vaccination strategies in the United States.
    Shepard CW; Ortega-Sanchez IR; Scott RD; Rosenstein NE;
    Pediatrics; 2005 May; 115(5):1220-32. PubMed ID: 15867028
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Parental preferences for rotavirus vaccination for their children under 5 years old in China: A discrete choice experiment.
    Ma W; Zhang L; Ren D; Meng X; Yin J; Sun Q
    Hum Vaccin Immunother; 2023 Dec; 19(1):2179222. PubMed ID: 36794417
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Societal preferences for fertility treatment in Australia: a stated preference discrete choice experiment.
    Botha W; Donnolley N; Shanahan M; Norman RJ; Chambers GM
    J Med Econ; 2019 Jan; 22(1):95-107. PubMed ID: 30431385
    [No Abstract]   [Full Text] [Related]  

  • 49. Does attribute framing in discrete choice experiments influence willingness to pay? Results from a discrete choice experiment in screening for colorectal cancer.
    Howard K; Salkeld G
    Value Health; 2009; 12(2):354-63. PubMed ID: 18657102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From Qualitative Research to Quantitative Preference Elicitation: An Example in Invasive Meningococcal Disease.
    Coulter J; Whichello C; Heidenreich S; Hauber B; Michaels-Igbokwe C; Cappelleri JC; Peyrani P; Vespa Presa J; Venkatraman M; Schley K
    Patient; 2024 May; 17(3):319-333. PubMed ID: 38388957
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Valuing injection frequency and other attributes of type 2 diabetes treatments in Australia: a discrete choice experiment.
    Fifer S; Rose J; Hamrosi KK; Swain D
    BMC Health Serv Res; 2018 Aug; 18(1):675. PubMed ID: 30165844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Valuing the delivery of dental care: Heterogeneity in patients' preferences and willingness-to-pay for dental care attributes.
    Sever I; Verbič M; Sever EK
    J Dent; 2018 Feb; 69():93-101. PubMed ID: 29242040
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Capturing Adult Patient Preferences Toward Benefits and Risks of Second-Line Antihyperglycemic Medications Used in Type 2 Diabetes: A Discrete Choice Experiment.
    Donnan JR; Johnston K; Chibrikov E; Marra CA; Aubrey-Bassler K; Najafzadeh M; Nguyen H; Gamble JM
    Can J Diabetes; 2020 Feb; 44(1):6-13. PubMed ID: 31311729
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in meningococcal C epidemiology and vaccine effectiveness after vaccine introduction and schedule modification.
    Garrido-Estepa M; León-Gómez I; Herruzo R; Cano R
    Vaccine; 2014 May; 32(22):2604-9. PubMed ID: 24662700
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Preferential differences in vaccination decision-making for oneself or one's child in The Netherlands: a discrete choice experiment.
    Hoogink J; Verelst F; Kessels R; van Hoek AJ; Timen A; Willem L; Beutels P; Wallinga J; de Wit GA
    BMC Public Health; 2020 Jun; 20(1):828. PubMed ID: 32487041
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Determinants of willingness to pay for self-paid vaccines in China.
    Hou Z; Jie Chang ; Yue D; Fang H; Meng Q; Zhang Y
    Vaccine; 2014 Jul; 32(35):4471-4477. PubMed ID: 24968160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Parents' preferences for seasonal influenza vaccine for their children in Japan.
    Shono A; Kondo M
    Vaccine; 2014 Sep; 32(39):5071-6. PubMed ID: 25063570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Outcomes from the Use of Targeted Interventions to Increase Meningococcal Vaccination Rates in a Pediatric Clinic.
    Podraza L; Vasudevan J; Hudson C; Jayan A; Varman M
    J Community Health; 2022 Feb; 47(1):87-93. PubMed ID: 34389892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The use of the health belief model to assess predictors of intent to receive the COVID-19 vaccine and willingness to pay.
    Wong LP; Alias H; Wong PF; Lee HY; AbuBakar S
    Hum Vaccin Immunother; 2020 Sep; 16(9):2204-2214. PubMed ID: 32730103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Meningococcal vaccination for adolescents? An economic evaluation in Victoria.
    Skull SA; Butler JR
    J Paediatr Child Health; 2001 Oct; 37(5):S28-33. PubMed ID: 11885733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.