BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 26740737)

  • 1. Application of a wide-field phantom eye for optical coherence tomography and reflectance imaging.
    Corcoran A; Muyo G; van Hemert J; Gorman A; Harvey AR
    J Mod Opt; 2015 Dec; 62(21):1828-1838. PubMed ID: 26740737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing Macular Thickness Measurements in Patients with Diabetic Macular Edema with the Optos Spectral OCT/SLO and Heidelberg Spectralis HRA + OCT.
    Sachdev A; Edington M; Morjaria R; Chong NV
    Vision (Basel); 2016 Apr; 1(1):. PubMed ID: 31740627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing the point spread function of retinal OCT devices with a model eye-based phantom.
    Agrawal A; Connors M; Beylin A; Liang CP; Barton D; Chen Y; Drezek RA; Pfefer TJ
    Biomed Opt Express; 2012 May; 3(5):1116-26. PubMed ID: 22567601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scanning laser 'en face' retinal imaging of epiretinal membranes.
    Reznicek L; Dabov S; Kayat B; Liegl R; Kampik A; Ulbig M; Kernt M
    Saudi J Ophthalmol; 2014 Apr; 28(2):134-8. PubMed ID: 24843307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baseline retinal thickness measurements with a novel integrated imaging system (concurrent optical coherence tomography and fundus photography) positively correlates with spectralis optical coherence tomography.
    Enghelberg M; Gasparian S; Chalam KV
    Quant Imaging Med Surg; 2022 Jan; 12(1):417-424. PubMed ID: 34993090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Megahertz ultra-wide-field swept-source retina optical coherence tomography compared to current existing imaging devices.
    Reznicek L; Klein T; Wieser W; Kernt M; Wolf A; Haritoglou C; Kampik A; Huber R; Neubauer AS
    Graefes Arch Clin Exp Ophthalmol; 2014 Jun; 252(6):1009-16. PubMed ID: 24789467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of two fundus oculi angiographic imaging system: Optos 200Tx and Heidelberg Spectralis.
    Li S; Wang JJ; Li HY; Wang W; Tian M; Lang XQ; Wang K
    Exp Ther Med; 2021 Jan; 21(1):19. PubMed ID: 33235628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Coherence Tomography Angiography of Pigmented Paravenous Retinochoroidal Atrophy.
    Cicinelli MV; Giuffrè C; Rabiolo A; Parodi MB; Bandello F
    Ophthalmic Surg Lasers Imaging Retina; 2018 May; 49(5):381-383. PubMed ID: 29772051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of ultra-widefield fluorescein angiography with the Heidelberg Spectralis(®) noncontact ultra-widefield module versus the Optos(®) Optomap(®).
    Witmer MT; Parlitsis G; Patel S; Kiss S
    Clin Ophthalmol; 2013; 7():389-94. PubMed ID: 23458976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate.
    Poddar R; Migacz JV; Schwartz DM; Werner JS; Gorczynska I
    J Biomed Opt; 2017 Oct; 22(10):1-14. PubMed ID: 29090534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multimodal imaging interpreted by graders to detect re-activation of diabetic eye disease in previously treated patients: the EMERALD diagnostic accuracy study.
    Lois N; Cook J; Wang A; Aldington S; Mistry H; Maredza M; McAuley D; Aslam T; Bailey C; Chong V; Ghanchi F; Scanlon P; Sivaprasad S; Steel D; Styles C; Azuara-Blanco A; Prior L; Waugh N
    Health Technol Assess; 2021 May; 25(32):1-104. PubMed ID: 34060440
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IMAGING OF CHOROIDAL NEOVASCULARIZATION SECONDARY TO CHOROIDAL RUPTURE TREATED BY INTRAVITREAL RANIBIZUMAB.
    Benillouche J; Astroz P; Ohayon A; Srour M; Amoroso F; Pedinielli A; Mouallem A; Souied EH
    Retin Cases Brief Rep; 2022 Mar; 16(2):222-225. PubMed ID: 31652192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive-optics SLO imaging combined with widefield OCT and SLO enables precise 3D localization of fluorescent cells in the mouse retina.
    Zawadzki RJ; Zhang P; Zam A; Miller EB; Goswami M; Wang X; Jonnal RS; Lee SH; Kim DY; Flannery JG; Werner JS; Burns ME; Pugh EN
    Biomed Opt Express; 2015 Jun; 6(6):2191-210. PubMed ID: 26114038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph.
    Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS
    Ophthalmology; 2010 Feb; 117(2):267-74. PubMed ID: 19969364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral-Domain Optical Coherence Tomography, Wide-Field Photography, and Fundus Autofluorescence Correlation of Posterior Ophthalmomyiasis Interna.
    Paulus YM; Butler NJ
    Ophthalmic Surg Lasers Imaging Retina; 2016 Jul; 47(7):682-5. PubMed ID: 27434903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colocalization error between the scanning laser ophthalmoscope infrared reflectance and optical coherence tomography images of the heidelberg spectralis.
    Vongkulsiri S; Suzuki M; Spaide RF
    Retina; 2015 Jun; 35(6):1211-5. PubMed ID: 25748282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide field of view swept-source optical coherence tomography for peripheral retinal disease.
    McNabb RP; Grewal DS; Mehta R; Schuman SG; Izatt JA; Mahmoud TH; Jaffe GJ; Mruthyunjaya P; Kuo AN
    Br J Ophthalmol; 2016 Oct; 100(10):1377-82. PubMed ID: 26755643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of wide-field infrared reflectance imaging in retinoschisis, retinal detachments, and schisis detachments.
    Banda HK; Shah A; Shah GK
    Int J Retina Vitreous; 2019; 5(Suppl 1):42. PubMed ID: 31890288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo wide-field reflectance/fluorescence imaging and polarization-sensitive optical coherence tomography of human oral cavity with a forward-viewing probe.
    Yoon Y; Jang WH; Xiao P; Kim B; Wang T; Li Q; Lee JY; Chung E; Kim KH
    Biomed Opt Express; 2015 Feb; 6(2):524-35. PubMed ID: 25780742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ability and reproducibility of Fourier-domain optical coherence tomography to detect retinal nerve fiber layer atrophy in Parkinson's disease.
    Garcia-Martin E; Satue M; Fuertes I; Otin S; Alarcia R; Herrero R; Bambo MP; Fernandez J; Pablo LE
    Ophthalmology; 2012 Oct; 119(10):2161-7. PubMed ID: 22749083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.