BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

628 related articles for article (PubMed ID: 26741399)

  • 1. Interplay between oxidant species and energy metabolism.
    Quijano C; Trujillo M; Castro L; Trostchansky A
    Redox Biol; 2016 Aug; 8():28-42. PubMed ID: 26741399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and cellular modifiers of oxidative stress: what can we learn from fatty acid oxidation defects?
    Olsen RK; Cornelius N; Gregersen N
    Mol Genet Metab; 2013; 110 Suppl():S31-9. PubMed ID: 24206932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive Oxygen Species and the Aging Eye: Specific Role of Metabolically Active Mitochondria in Maintaining Lens Function and in the Initiation of the Oxidation-Induced Maturity Onset Cataract--A Novel Platform of Mitochondria-Targeted Antioxidants With Broad Therapeutic Potential for Redox Regulation and Detoxification of Oxidants in Eye Diseases.
    Babizhayev MA; Yegorov YE
    Am J Ther; 2016; 23(1):e98-117. PubMed ID: 21048433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen peroxide resistance in Strigomonas culicis: Effects on mitochondrial functionality and Aedes aegypti interaction.
    Bombaça ACS; Dias FA; Ennes-Vidal V; Garcia-Gomes ADS; Sorgine MHF; d'Avila-Levy CM; Menna-Barreto RFS
    Free Radic Biol Med; 2017 Dec; 113():255-266. PubMed ID: 28993269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease.
    Babizhayev MA
    Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of antioxidant activity of taurine in diabetes.
    Schaffer SW; Azuma J; Mozaffari M
    Can J Physiol Pharmacol; 2009 Feb; 87(2):91-9. PubMed ID: 19234572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson's disease: a model-based analysis.
    Berndt N; Holzhütter HG; Bulik S
    FEBS J; 2013 Oct; 280(20):5080-93. PubMed ID: 23937586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
    Mailloux RJ; McBride SL; Harper ME
    Trends Biochem Sci; 2013 Dec; 38(12):592-602. PubMed ID: 24120033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular redox dysfunction in the development of cardiovascular diseases.
    Kanaan GN; Harper ME
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2822-2829. PubMed ID: 28778485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
    Fransen M; Nordgren M; Wang B; Apanasets O
    Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity.
    Rashida Gnanaprakasam JN; Wu R; Wang R
    Front Immunol; 2018; 9():1075. PubMed ID: 29868027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioenergetics and mitochondrial dysfunction in aging: recent insights for a therapeutical approach.
    Romano AD; Greco E; Vendemiale G; Serviddio G
    Curr Pharm Des; 2014; 20(18):2978-92. PubMed ID: 24079772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress.
    Spahis S; Borys JM; Levy E
    Antioxid Redox Signal; 2017 Mar; 26(9):445-461. PubMed ID: 27302002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells.
    Forkink M; Smeitink JA; Brock R; Willems PH; Koopman WJ
    Biochim Biophys Acta; 2010; 1797(6-7):1034-44. PubMed ID: 20100455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical basis and metabolic interplay of redox regulation.
    Zhang L; Wang X; Cueto R; Effi C; Zhang Y; Tan H; Qin X; Ji Y; Yang X; Wang H
    Redox Biol; 2019 Sep; 26():101284. PubMed ID: 31400697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Obesity and Diabetic Kidney Disease: Role of Oxidant Stress and Redox Balance.
    Sharma K
    Antioxid Redox Signal; 2016 Aug; 25(4):208-16. PubMed ID: 26983586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Changes in glutathione-dependent redox status and mitochondrial energetic strategies are part of the adaptive response during the filamentation process in Candida albicans.
    Guedouari H; Gergondey R; Bourdais A; Vanparis O; Bulteau AL; Camadro JM; Auchère F
    Biochim Biophys Acta; 2014 Sep; 1842(9):1855-69. PubMed ID: 25018088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial ROS generation and its regulation: mechanisms involved in H(2)O(2) signaling.
    Rigoulet M; Yoboue ED; Devin A
    Antioxid Redox Signal; 2011 Feb; 14(3):459-68. PubMed ID: 20649461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidant signals and oxidative stress.
    Finkel T
    Curr Opin Cell Biol; 2003 Apr; 15(2):247-54. PubMed ID: 12648682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.