BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 26741408)

  • 1. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications.
    Lim EK; Chung BH
    Nat Protoc; 2016 Feb; 11(2):236-51. PubMed ID: 26741408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and functionalization of graphene nanocomposites for biomedical applications.
    Yang K; Feng L; Hong H; Cai W; Liu Z
    Nat Protoc; 2013 Dec; 8(12):2392-403. PubMed ID: 24202553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications.
    Lee JE; Lee N; Kim T; Kim J; Hyeon T
    Acc Chem Res; 2011 Oct; 44(10):893-902. PubMed ID: 21848274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drug/Dye-Loaded, Multifunctional PEG-Chitosan-Iron Oxide Nanocomposites for Methotraxate Synergistically Self-Targeted Cancer Therapy and Dual Model Imaging.
    Lin J; Li Y; Li Y; Wu H; Yu F; Zhou S; Xie L; Luo F; Lin C; Hou Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11908-20. PubMed ID: 25978458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gadolinium-based nanoparticles for highly efficient T1-weighted magnetic resonance imaging.
    Lim EK; Kang B; Choi Y; Jang E; Han S; Lee K; Suh JS; Haam S; Huh YM
    Nanotechnology; 2014 Jun; 25(24):245103. PubMed ID: 24872113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging.
    Yang X; Grailer JJ; Rowland IJ; Javadi A; Hurley SA; Matson VZ; Steeber DA; Gong S
    ACS Nano; 2010 Nov; 4(11):6805-17. PubMed ID: 20958084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional pH-sensitive superparamagnetic iron-oxide nanocomposites for targeted drug delivery and MR imaging.
    Zhu L; Wang D; Wei X; Zhu X; Li J; Tu C; Su Y; Wu J; Zhu B; Yan D
    J Control Release; 2013 Aug; 169(3):228-38. PubMed ID: 23485450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery.
    Li C; Yang D; Ma P; Chen Y; Wu Y; Hou Z; Dai Y; Zhao J; Sui C; Lin J
    Small; 2013 Dec; 9(24):4150-9. PubMed ID: 23843254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI-visual order-disorder micellar nanostructures for smart cancer theranostics.
    Patra HK; Ul Khaliq N; Romu T; Wiechec E; Borga M; Turner AP; Tiwari A
    Adv Healthc Mater; 2014 Apr; 3(4):526-35. PubMed ID: 23983185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering nanocomposite materials for cancer therapy.
    Minelli C; Lowe SB; Stevens MM
    Small; 2010 Nov; 6(21):2336-57. PubMed ID: 20878632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment.
    Andoh V; Ocansey DKW; Naveed H; Wang N; Chen L; Chen K; Mao F
    Int J Nanomedicine; 2024; 19():6099-6126. PubMed ID: 38911500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites.
    Gupta R; Bajpai AK
    J Biomater Sci Polym Ed; 2011; 22(7):893-918. PubMed ID: 20566063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HER2 Targeted Breast Cancer Therapy with Switchable "Off/On" Multifunctional "Smart" Magnetic Polymer Core-Shell Nanocomposites.
    Vivek R; Thangam R; Kumar SR; Rejeeth C; Kumar GS; Sivasubramanian S; Vincent S; Gopi D; Kannan S
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2262-79. PubMed ID: 26771508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of integrated cancer nanomedicine in overcoming drug resistance.
    Iyer AK; Singh A; Ganta S; Amiji MM
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1784-802. PubMed ID: 23880506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomedicine for cancer: lipid-based nanostructures for drug delivery and monitoring.
    Namiki Y; Fuchigami T; Tada N; Kawamura R; Matsunuma S; Kitamoto Y; Nakagawa M
    Acc Chem Res; 2011 Oct; 44(10):1080-93. PubMed ID: 21786832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous nanocomposites of PEG-PLA/calcium phosphate: room-temperature synthesis and its application in drug delivery.
    Tang QL; Zhu YJ; Duan YR; Wang Q; Wang KW; Cao SW; Chen F; Wu J
    Dalton Trans; 2010 May; 39(18):4435-9. PubMed ID: 20422101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional nanoparticles for multimodal imaging and theragnosis.
    Lee DE; Koo H; Sun IC; Ryu JH; Kim K; Kwon IC
    Chem Soc Rev; 2012 Apr; 41(7):2656-72. PubMed ID: 22189429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luminescent and magnetic Fe3O4/Py/PAM nanocomposites for the chromium(VI) determination.
    Hong S; Chen H; Wang L; Wang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Jul; 70(2):449-53. PubMed ID: 18321770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gd-based upconversion nanocarriers with yolk-shell structure for dual-modal imaging and enhanced chemotherapy to overcome multidrug resistance in breast cancer.
    Pan Y; Zhang L; Zeng L; Ren W; Xiao X; Zhang J; Zhang L; Li A; Lu G; Wu A
    Nanoscale; 2016 Jan; 8(2):878-88. PubMed ID: 26648267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional organic-inorganic composite luminescent nanospheres.
    Zhu Y; Zhao Y; Ma Y; Deng M; Wang L
    Luminescence; 2012; 27(1):74-9. PubMed ID: 21710584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.