These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 2674149)

  • 1. A chronic intracortical electrode array: preliminary results.
    Campbell PK; Normann RA; Horch KW; Stensaas SS
    J Biomed Mater Res; 1989 Aug; 23(A2 Suppl):245-59. PubMed ID: 2674149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 100 electrode intracortical array: structural variability.
    Campbell PK; Jones KE; Normann RA
    Biomed Sci Instrum; 1990; 26():161-5. PubMed ID: 2334761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array.
    Campbell PK; Jones KE; Huber RJ; Horch KW; Normann RA
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):758-68. PubMed ID: 1937509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An in-vivo paradigm for the evaluation of stimulating electrodes for use with a visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2004 May; 74(5):372-8. PubMed ID: 15144260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord stimulation electrode design: prospective, randomized, controlled trial comparing percutaneous and laminectomy electrodes-part I: technical outcomes.
    North RB; Kidd DH; Olin JC; Sieracki JM
    Neurosurgery; 2002 Aug; 51(2):381-9; discussion 389-90. PubMed ID: 12182776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term histological and electrophysiological results of an inactive epiretinal electrode array implantation in dogs.
    Majji AB; Humayun MS; Weiland JD; Suzuki S; D'Anna SA; de Juan E
    Invest Ophthalmol Vis Sci; 1999 Aug; 40(9):2073-81. PubMed ID: 10440263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focal activation of the feline retina via a suprachoroidal electrode array.
    Wong YT; Chen SC; Seo JM; Morley JW; Lovell NH; Suaning GJ
    Vision Res; 2009 Mar; 49(8):825-33. PubMed ID: 19272402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation of the retina with a multielectrode extraocular visual prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    ANZ J Surg; 2005 Aug; 75(8):697-704. PubMed ID: 16076336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical activation following chronic passive implantation of a wide-field suprachoroidal retinal prosthesis.
    Villalobos J; Fallon JB; Nayagam DA; Shivdasani MN; Luu CD; Allen PJ; Shepherd RK; Williams CE
    J Neural Eng; 2014 Aug; 11(4):046017. PubMed ID: 24965866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A MEMS-based flexible multichannel ECoG-electrode array.
    Rubehn B; Bosman C; Oostenveld R; Fries P; Stieglitz T
    J Neural Eng; 2009 Jun; 6(3):036003. PubMed ID: 19436080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical stimulation of the brain. I. Electrodes and electrode arrays.
    Pudenz RH; Bullara LA; Talalla A
    Surg Neurol; 1975 Jul; 4(1):37-42. PubMed ID: 1166402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatibility of silicon-based electrode arrays implanted in feline cortical tissue.
    Schmidt S; Horch K; Normann R
    J Biomed Mater Res; 1993 Nov; 27(11):1393-9. PubMed ID: 8263001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs.
    Chow AY; Pardue MT; Perlman JI; Ball SL; Chow VY; Hetling JR; Peyman GA; Liang C; Stubbs EB; Peachey NS
    J Rehabil Res Dev; 2002; 39(3):313-21. PubMed ID: 12173752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of large arrays of cortical electrodes for use in man.
    Klomp GF; Womack MV; Dobelle WH
    J Biomed Mater Res; 1977 May; 11(3):347-64. PubMed ID: 853046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantation and testing of subretinal film electrodes in domestic pigs.
    Schanze T; Sachs HG; Wiesenack C; Brunner U; Sailer H
    Exp Eye Res; 2006 Feb; 82(2):332-40. PubMed ID: 16125172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and clinical application of a double helix electrode for functional electrical stimulation.
    Scheiner A; Polando G; Marsolais EB
    IEEE Trans Biomed Eng; 1994 May; 41(5):425-31. PubMed ID: 8070801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface stimulation of the brain with a prototype array for a visual cortex prosthesis.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2004 Sep; 11(7):750-5. PubMed ID: 15337140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implanted material tolerance studies for a multiple-channel cochlear prosthesis.
    Shepherd RK; Webb RL; Clark GM; Pyman BC; Hirshorn MS; Murray MT; Houghton ME
    Acta Otolaryngol Suppl; 1984; 411():71-81. PubMed ID: 6441446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of chronic multi-channel cortical implantation techniques: manual versus mechanical insertion.
    Rennaker RL; Street S; Ruyle AM; Sloan AM
    J Neurosci Methods; 2005 Mar; 142(2):169-76. PubMed ID: 15698656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve.
    Branner A; Stein RB; Fernandez E; Aoyagi Y; Normann RA
    IEEE Trans Biomed Eng; 2004 Jan; 51(1):146-57. PubMed ID: 14723504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.