These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 26741645)

  • 1. Activating "Invisible" Glue: Using Electron Beam for Enhancement of Interfacial Properties of Graphene-Metal Contact.
    Kim S; Russell M; Kulkarni DD; Henry M; Kim S; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    ACS Nano; 2016 Jan; 10(1):1042-9. PubMed ID: 26741645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing contact resistance in graphene devices through contact area patterning.
    Smith JT; Franklin AD; Farmer DB; Dimitrakopoulos CD
    ACS Nano; 2013 Apr; 7(4):3661-7. PubMed ID: 23473291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused-laser-enabled p-n junctions in graphene field-effect transistors.
    Kim YD; Bae MH; Seo JT; Kim YS; Kim H; Lee JH; Ahn JR; Lee SW; Chun SH; Park YD
    ACS Nano; 2013 Jul; 7(7):5850-7. PubMed ID: 23782162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.
    Smith C; Qaisi R; Liu Z; Yu Q; Hussain MM
    ACS Nano; 2013 Jul; 7(7):5818-23. PubMed ID: 23777434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic modulation of electronic properties of graphene by localized carbon doping using focused electron beam induced deposition.
    Kim S; Russell M; Henry M; Kim SS; Naik RR; Voevodin AA; Jang SS; Tsukruk VV; Fedorov AG
    Nanoscale; 2015 Sep; 7(36):14946-52. PubMed ID: 26302897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecule-by-molecule writing using a focused electron beam.
    van Dorp WF; Zhang X; Feringa BL; Hansen TW; Wagner JB; De Hosson JT
    ACS Nano; 2012 Nov; 6(11):10076-81. PubMed ID: 23066638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the physicochemical state of carbon on graphene using focused electron-beam-induced deposition.
    Kim S; Kulkarni DD; Davis R; Kim SS; Naik RR; Voevodin AA; Russell M; Jang SS; Tsukruk VV; Fedorov AG
    ACS Nano; 2014 Jul; 8(7):6805-13. PubMed ID: 24988046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct-write deposition and focused-electron-beam-induced purification of gold nanostructures.
    Belić D; Shawrav MM; Gavagnin M; Stöger-Pollach M; Wanzenboeck HD; Bertagnolli E
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2467-79. PubMed ID: 25545798
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering electronic properties of graphene by coupling with Si-rich, two-dimensional islands.
    Lee DH; Yi J; Lee JM; Lee SJ; Doh YJ; Jeong HY; Lee Z; Paik U; Rogers JA; Park WI
    ACS Nano; 2013 Jan; 7(1):301-7. PubMed ID: 23234234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electric field-controlled rippling of graphene.
    Osváth Z; Lefloch F; Bouchiat V; Chapelier C
    Nanoscale; 2013 Nov; 5(22):10996-1002. PubMed ID: 24065072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adsorption of ammonia on graphene.
    Romero HE; Joshi P; Gupta AK; Gutierrez HR; Cole MW; Tadigadapa SA; Eklund PC
    Nanotechnology; 2009 Jun; 20(24):245501. PubMed ID: 19468162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interfacial bonding characteristics between graphene and dielectric substrates.
    Das S; Lahiri D; Agarwal A; Choi W
    Nanotechnology; 2014 Jan; 25(4):045707. PubMed ID: 24399030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics.
    Parvez K; Li R; Puniredd SR; Hernandez Y; Hinkel F; Wang S; Feng X; Müllen K
    ACS Nano; 2013 Apr; 7(4):3598-606. PubMed ID: 23531157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue.
    Suk JW; Lee WH; Lee J; Chou H; Piner RD; Hao Y; Akinwande D; Ruoff RS
    Nano Lett; 2013 Apr; 13(4):1462-7. PubMed ID: 23510359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic properties of graphene nanostructures.
    Molitor F; Güttinger J; Stampfer C; Dröscher S; Jacobsen A; Ihn T; Ensslin K
    J Phys Condens Matter; 2011 Jun; 23(24):243201. PubMed ID: 21613728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes.
    Leong WS; Luo X; Li Y; Khoo KH; Quek SY; Thong JT
    ACS Nano; 2015 Jan; 9(1):869-77. PubMed ID: 25517793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of ripples in graphene as a result of interfacial instabilities.
    Paronyan TM; Pigos EM; Chen G; Harutyunyan AR
    ACS Nano; 2011 Dec; 5(12):9619-27. PubMed ID: 22092098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contact and edge effects in graphene devices.
    Lee EJ; Balasubramanian K; Weitz RT; Burghard M; Kern K
    Nat Nanotechnol; 2008 Aug; 3(8):486-90. PubMed ID: 18685636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of low-energy electrons in focused electron beam induced deposition: four case studies of representative precursors.
    Thorman RM; Kumar T P R; Fairbrother DH; Ingólfsson O
    Beilstein J Nanotechnol; 2015; 6():1904-26. PubMed ID: 26665061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. n-Type behavior of graphene supported on Si/SiO(2) substrates.
    Romero HE; Shen N; Joshi P; Gutierrez HR; Tadigadapa SA; Sofo JO; Eklund PC
    ACS Nano; 2008 Oct; 2(10):2037-44. PubMed ID: 19206449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.