BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26742131)

  • 1. Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
    Carrascal CA; Aristizabal S; Greenleaf JF; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):222-32. PubMed ID: 26742131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study.
    Palmeri ML; Feltovich H; Homyk AD; Carlson LC; Hall TJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Oct; 60(10):2053-64. PubMed ID: 24081254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
    Amador Carrascal C; Chen S; Urban MW; Greenleaf JF
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jan; 65(1):3-13. PubMed ID: 29283342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.
    Lipman SL; Rouze NC; Palmeri ML; Nightingale KR
    Ultrasound Med Biol; 2018 Apr; 44(4):897-908. PubMed ID: 29422328
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Point Frequency Shift Method for Shear Wave Attenuation Measurement.
    Kijanka P; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Mar; 67(3):483-496. PubMed ID: 31603777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Phase Transmit Focusing for Multiangle Compound Shear-Wave Elasticity Imaging.
    Yoon H; Aglyamov SR; Emelianov SY
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Oct; 64(10):1439-1449. PubMed ID: 28708552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrowband shear wave generation by a Finite-Amplitude radiation force: The fundamental component.
    Giannoula A; Cobbold RS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):343-58. PubMed ID: 18334341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved two-point frequency shift power method for measurement of shear wave attenuation.
    Kijanka P; Urban MW
    Ultrasonics; 2022 Aug; 124():106735. PubMed ID: 35390627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A diffraction correction for storage and loss moduli imaging using radiation force based elastography.
    Budelli E; Brum J; Bernal M; Deffieux T; Tanter M; Lema P; Negreira C; Gennisson JL
    Phys Med Biol; 2017 Jan; 62(1):91-106. PubMed ID: 27973354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Frequency-Shift Method to Measure Shear-Wave Attenuation in Soft Tissues.
    Bernard S; Kazemirad S; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Mar; 64(3):514-524. PubMed ID: 27913343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-wave elasticity imaging of a liver fibrosis mouse model using high-frequency ultrasound.
    Yeh CL; Chen BR; Tseng LY; Jao P; Su TH; Li PC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1295-307. PubMed ID: 26168176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shear wave elastography using amplitude-modulated acoustic radiation force and phase-sensitive optical coherence tomography.
    Nguyen TM; Arnal B; Song S; Huang Z; Wang RK; O'Donnell M
    J Biomed Opt; 2015 Jan; 20(1):016001. PubMed ID: 25554970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing stiffness of human prostates using acoustic radiation force.
    Zhai L; Madden J; Foo WC; Mouraviev V; Polascik TJ; Palmeri ML; Nightingale KR
    Ultrason Imaging; 2010 Oct; 32(4):201-13. PubMed ID: 21213566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized shear wave generation using hybrid beamforming methods.
    Nabavizadeh A; Greenleaf JF; Fatemi M; Urban MW
    Ultrasound Med Biol; 2014 Jan; 40(1):188-99. PubMed ID: 24139918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling shear waves through a viscoelastic medium induced by acoustic radiation force.
    Lee KH; Szajewski BA; Hah Z; Parker KJ; Maniatty AM
    Int J Numer Method Biomed Eng; 2012; 28(6-7):678-96. PubMed ID: 25364845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the Impact of Imaging Through Body Walls on Shear Wave Elasticity Measurements.
    Zhang B; Bottenus N; Jin FQ; Nightingale KR
    Ultrasound Med Biol; 2023 Mar; 49(3):734-749. PubMed ID: 36564217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical analysis for transverse microbead trapping using 30 MHz focused ultrasound in ray acoustics regime.
    Lee J
    Ultrasonics; 2014 Jan; 54(1):11-9. PubMed ID: 23809757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.