BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 26742141)

  • 1. Reconfigurable Resonant Regulating Rectifier With Primary Equalization for Extended Coupling- and Loading-Range in Bio-Implant Wireless Power Transfer.
    Li X; Meng X; Tsui CY; Ki WH
    IEEE Trans Biomed Circuits Syst; 2015 Dec; 9(6):875-84. PubMed ID: 26742141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Output Single-Stage Regulating Rectifier With PWM and Dual-Mode PFM Control for Wireless Powering of Biomedical Implants.
    Erfani R; Marefat F; Mohseni P
    IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1195-1206. PubMed ID: 33216720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
    Hashemi SS; Sawan M; Savaria Y
    IEEE Trans Biomed Circuits Syst; 2012 Aug; 6(4):326-35. PubMed ID: 23853177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 13.56 MHz CMOS Active Rectifier With Switched-Offset and Compensated Biasing for Biomedical Wireless Power Transfer Systems.
    Yan Lu ; Wing-Hung Ki
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):334-44. PubMed ID: 23846494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel wireless power and data transmission AC to DC converter for an implantable device.
    Liu JY; Tang KT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1875-8. PubMed ID: 24110077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wireless power transmission for biomedical implants: The role of near-zero threshold CMOS rectifiers.
    Mohammadi A; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5453-6. PubMed ID: 26737525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 13.56 MHz Triple Mode Rectifier Circuit With Extended Coupling Range for Wirelessly Powered Implantable Medical Devices.
    Engur Y; Yigit HA; Kulah H
    IEEE Trans Biomed Circuits Syst; 2021 Feb; 15(1):68-79. PubMed ID: 33360999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A low-power 13.56 MHz RF front-end circuit for implantable biomedical devices.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Kung JY
    IEEE Trans Biomed Circuits Syst; 2013 Jun; 7(3):256-65. PubMed ID: 23853325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Inductive Power and Data Telemetry Subsystem With Fast Transient Low Dropout Regulator for Biomedical Implants.
    Lin YP; Tang KT
    IEEE Trans Biomed Circuits Syst; 2016 Apr; 10(2):435-44. PubMed ID: 26285218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 13.56 MHz Wireless Power Transfer System With Fully Integrated PLL-Based Frequency-Regulated Reconfigurable Duty Control for Implantable Medical Devices.
    Namgoong G; Park W; Bien F
    IEEE Trans Biomed Circuits Syst; 2022 Dec; 16(6):1116-1128. PubMed ID: 36223350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Triple-Loop Inductive Power Transmission System for Biomedical Applications.
    Lee B; Kiani M; Ghovanloo M
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):138-48. PubMed ID: 25667358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An On-Chip Multi-Voltage Power Converter With Leakage Current Prevention Using 0.18 μm High-Voltage CMOS Process.
    Lo YK; Chen K; Gad P; Liu W
    IEEE Trans Biomed Circuits Syst; 2016 Feb; 10(1):163-74. PubMed ID: 25616076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wirelessly Powered and Bi-Directional Data Communication System With Adaptive Conversion Chain for Multisite Biomedical Implants Over Single Inductive Link.
    Karimi MJ; Jin M; Zhou Y; Dehollain C; Schmid A
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):636-647. PubMed ID: 38285577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maximum achievable efficiency in near-field coupled power-transfer systems.
    Zargham M; Gulak PG
    IEEE Trans Biomed Circuits Syst; 2012 Jun; 6(3):228-45. PubMed ID: 23853145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dual-Output Reconfigurable Shared-Inductor Boost-Converter/Current-Mode Inductive Power Management ASIC With 750% Extended Output-Power Range, Adaptive Switching Control, and Voltage-Power Regulation.
    Gougheri HS; Graybill P; Kiani M
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):1075-1086. PubMed ID: 31449030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultracompact Implantable Design With Integrated Wireless Power Transfer and RF Transmission Capabilities.
    Sun G; Muneer B; Li Y; Zhu Q
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):281-291. PubMed ID: 29570056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-power wireless ECG acquisition and classification system for body sensor networks.
    Lee SY; Hong JH; Hsieh CH; Liang MC; Chang Chien SY; Lin KH
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):236-46. PubMed ID: 25561446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-power analog integrated circuits for wireless ECG acquisition systems.
    Tsai TH; Hong JH; Wang LH; Lee SY
    IEEE Trans Inf Technol Biomed; 2012 Sep; 16(5):907-17. PubMed ID: 22374371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 3 mm × 3 mm Fully Integrated Wireless Power Receiver and Neural Interface System-on-Chip.
    Kim C; Park J; Ha S; Akinin A; Kubendran R; Mercier PP; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1736-1746. PubMed ID: 31581095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless charing pillow for a fully implantable hearing aid: Design of a circular array coil based on finite element analysis for reducing magnetic weak zones.
    Lim HG; Kim JH; Shin DH; Woo ST; Seong KW; Lee JH; Kim MN; Wei Q; Cho JH
    Biomed Mater Eng; 2015; 26 Suppl 1():S1741-7. PubMed ID: 26405942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.