These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1075 related articles for article (PubMed ID: 26742327)

  • 1. Biovalorization potential of peels of Ananas cosmosus (L.) Merr. for ethanol production by Pichia stipitis NCIM 3498 & Pachysolen tannophilus MTCC 1077.
    Bhatia L; Johri S
    Indian J Exp Biol; 2015 Dec; 53(12):819-27. PubMed ID: 26742327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioethanol production from ball milled bagasse using an on-site produced fungal enzyme cocktail and xylose-fermenting Pichia stipitis.
    Buaban B; Inoue H; Yano S; Tanapongpipat S; Ruanglek V; Champreda V; Pichyangkura R; Rengpipat S; Eurwilaichitr L
    J Biosci Bioeng; 2010 Jul; 110(1):18-25. PubMed ID: 20541110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol production from residual wood chips of cellulose industry: acid pretreatment investigation, hemicellulosic hydrolysate fermentation, and remaining solid fraction fermentation by SSF process.
    Silva NL; Betancur GJ; Vasquez MP; Gomes Ede B; Pereira N
    Appl Biochem Biotechnol; 2011 Apr; 163(7):928-36. PubMed ID: 20890779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Separate hydrolysis and fermentation (SHF) of Prosopis juliflora, a woody substrate, for the production of cellulosic ethanol by Saccharomyces cerevisiae and Pichia stipitis-NCIM 3498.
    Gupta R; Sharma KK; Kuhad RC
    Bioresour Technol; 2009 Feb; 100(3):1214-20. PubMed ID: 18835157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of fermentation parameters for production of ethanol from kinnow waste and banana peels by simultaneous saccharification and fermentation.
    Sharma N; Kalra KL; Oberoi HS; Bansal S
    Indian J Microbiol; 2007 Dec; 47(4):310-6. PubMed ID: 23100683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioconversion of brewer's spent grains to bioethanol.
    White JS; Yohannan BK; Walker GM
    FEMS Yeast Res; 2008 Nov; 8(7):1175-84. PubMed ID: 18547331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ethanol production from Rice (Oryza sativa) straw by simultaneous saccharification and cofermentation.
    Goel A; Wati L
    Indian J Exp Biol; 2016 Aug; 54(8):525-9. PubMed ID: 28577514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Saccharum spontaneum (wild sugarcane) as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3.
    Chandel AK; Narasu ML; Chandrasekhar G; Manikyam A; Rao LV
    Bioresour Technol; 2009 Apr; 100(8):2404-10. PubMed ID: 19114303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scale-up study of oxalic acid pretreatment of agricultural lignocellulosic biomass for the production of bioethanol.
    Lee JW; Houtman CJ; Kim HY; Choi IG; Jeffries TW
    Bioresour Technol; 2011 Aug; 102(16):7451-6. PubMed ID: 21632241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme production and oil palm empty fruit bunch bioconversion to ethanol using a hybrid yeast strain.
    Zhai L; Manglekar RR; Geng A
    Biotechnol Appl Biochem; 2020 Sep; 67(5):714-722. PubMed ID: 31498481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis.
    Agbogbo FK; Coward-Kelly G
    Biotechnol Lett; 2008 Sep; 30(9):1515-24. PubMed ID: 18431677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments.
    Choudhary J; Singh S; Nain L
    J Biosci Bioeng; 2017 Mar; 123(3):342-346. PubMed ID: 27856231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up.
    Lee JW; Zhu JY; Scordia D; Jeffries TW
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):814-22. PubMed ID: 21671055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation.
    Maeda RN; Barcelos CA; Santa Anna LM; Pereira N
    J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pretreatment methods for hazelnut shell hydrolysate fermentation with Pichia Stipitis to ethanol.
    Arslan Y; Eken-Saraçoğlu N
    Bioresour Technol; 2010 Nov; 101(22):8664-70. PubMed ID: 20599381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of torrefaction for the pretreatment of rice straw for ethanol production.
    Sheikh MM; Kim CH; Park HJ; Kim SH; Kim GC; Lee JY; Sim SW; Kim JW
    J Sci Food Agric; 2013 Oct; 93(13):3198-204. PubMed ID: 23553543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of initial xylose concentration, agitation, and aeration on ethanol production by Pichia stipitis from rice straw hemicellulosic hydrolysate.
    Silva JP; Mussatto SI; Roberto IC
    Appl Biochem Biotechnol; 2010 Nov; 162(5):1306-15. PubMed ID: 19946760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioethanol production from rice straw by a sequential use of Saccharomyces cerevisiae and Pichia stipitis with heat inactivation of Saccharomyces cerevisiae cells prior to xylose fermentation.
    Li Y; Park JY; Shiroma R; Tokuyasu K
    J Biosci Bioeng; 2011 Jun; 111(6):682-6. PubMed ID: 21397557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag.
    Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J
    Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 54.