These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 26742430)
1. Nanonized itraconazole powders for extemporary oral suspensions: Role of formulation components studied by a mixture design. Foglio Bonda A; Rinaldi M; Segale L; Palugan L; Cerea M; Vecchio C; Pattarino F Eur J Pharm Sci; 2016 Feb; 83():175-83. PubMed ID: 26742430 [TBL] [Abstract][Full Text] [Related]
2. Conversion of nanosuspensions into dry powders by spray drying: a case study. Chaubal MV; Popescu C Pharm Res; 2008 Oct; 25(10):2302-8. PubMed ID: 18509597 [TBL] [Abstract][Full Text] [Related]
3. Preparation of multiparticulate systems for oral delivery of a micronized or nanosized poorly soluble drug. Cerea M; Pattarino F; Foglio Bonda A; Palugan L; Segale L; Vecchio C Drug Dev Ind Pharm; 2016 Sep; 42(9):1466-75. PubMed ID: 26786555 [TBL] [Abstract][Full Text] [Related]
4. Formulation and drying of miconazole and itraconazole nanosuspensions. Cerdeira AM; Mazzotti M; Gander B Int J Pharm; 2013 Feb; 443(1-2):209-20. PubMed ID: 23291552 [TBL] [Abstract][Full Text] [Related]
5. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Mou D; Chen H; Wan J; Xu H; Yang X Int J Pharm; 2011 Jul; 413(1-2):237-44. PubMed ID: 21540090 [TBL] [Abstract][Full Text] [Related]
6. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Sun W; Ni R; Zhang X; Li LC; Mao S Drug Dev Ind Pharm; 2015 Jun; 41(6):927-33. PubMed ID: 24785575 [TBL] [Abstract][Full Text] [Related]
7. Improvement of a mixture experiment model relating the component proportions to the size of nanonized itraconazole particles in extemporary suspensions. Pattarino F; Piepel G; Rinaldi M Eur J Pharm Sci; 2018 May; 117():297-300. PubMed ID: 29510171 [TBL] [Abstract][Full Text] [Related]
9. Converting nanosuspension into inhalable and redispersible nanoparticles by combined in-situ thermal gelation and spray drying. Wan KY; Weng J; Wong SN; Kwok PCL; Chow SF; Chow AHL Eur J Pharm Biopharm; 2020 Apr; 149():238-247. PubMed ID: 32112895 [TBL] [Abstract][Full Text] [Related]
10. Nanonization of itraconazole by high pressure homogenization: stabilizer optimization and effect of particle size on oral absorption. Sun W; Mao S; Shi Y; Li LC; Fang L J Pharm Sci; 2011 Aug; 100(8):3365-3373. PubMed ID: 21520089 [TBL] [Abstract][Full Text] [Related]
11. New inhalation-optimized itraconazole nanoparticle-based dry powders for the treatment of invasive pulmonary aspergillosis. Duret C; Wauthoz N; Sebti T; Vanderbist F; Amighi K Int J Nanomedicine; 2012; 7():5475-89. PubMed ID: 23093903 [TBL] [Abstract][Full Text] [Related]
12. Preparation and solidification of redispersible nanosuspensions. Zhang X; Guan J; Ni R; Li LC; Mao S J Pharm Sci; 2014 Jul; 103(7):2166-2176. PubMed ID: 24840928 [TBL] [Abstract][Full Text] [Related]
13. Increased dissolution and oral absorption of itraconazole/Soluplus extrudate compared with itraconazole nanosuspension. Zhang K; Yu H; Luo Q; Yang S; Lin X; Zhang Y; Tian B; Tang X Eur J Pharm Biopharm; 2013 Nov; 85(3 Pt B):1285-92. PubMed ID: 23562534 [TBL] [Abstract][Full Text] [Related]
14. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties. Duret C; Wauthoz N; Sebti T; Vanderbist F; Amighi K Int J Pharm; 2012 May; 428(1-2):103-13. PubMed ID: 22414388 [TBL] [Abstract][Full Text] [Related]
15. Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy. Mukherjee S; Ray S; Thakur RS Pak J Pharm Sci; 2009 Apr; 22(2):131-8. PubMed ID: 19339221 [TBL] [Abstract][Full Text] [Related]
16. Formulation and characterization of biocompatible and stable I.V. itraconazole nanosuspensions stabilized by a new stabilizer polyethylene glycol-poly(β-Benzyl-l-aspartate) (PEG-PBLA). Zong L; Li X; Wang H; Cao Y; Yin L; Li M; Wei Z; Chen D; Pu X; Han J Int J Pharm; 2017 Oct; 531(1):108-117. PubMed ID: 28830781 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Solid Dispersion of Itraconazole Prepared by Solubilization in Concentrated Aqueous Solutions of Weak Organic Acids and Drying. Parikh T; Sandhu HK; Talele TT; Serajuddin AT Pharm Res; 2016 Jun; 33(6):1456-71. PubMed ID: 26951566 [TBL] [Abstract][Full Text] [Related]
18. Spray drying of API nanosuspensions: Importance of drying temperature, type and content of matrix former and particle size for successful formulation and process development. Czyz S; Wewers M; Finke JH; Kwade A; van Eerdenbrugh B; Juhnke M; Bunjes H Eur J Pharm Biopharm; 2020 Jul; 152():63-71. PubMed ID: 32376369 [TBL] [Abstract][Full Text] [Related]
19. Alternative matrix formers for nanosuspension solidification: Dissolution performance and X-ray microanalysis as an evaluation tool for powder dispersion. Van Eerdenbrugh B; Froyen L; Van Humbeeck J; Martens JA; Augustijns P; Van Den Mooter G Eur J Pharm Sci; 2008 Nov; 35(4):344-53. PubMed ID: 18765282 [TBL] [Abstract][Full Text] [Related]
20. Pharmacokinetic evaluation in mice of amorphous itraconazole-based dry powder formulations for inhalation with high bioavailability and extended lung retention. Duret C; Merlos R; Wauthoz N; Sebti T; Vanderbist F; Amighi K Eur J Pharm Biopharm; 2014 Jan; 86(1):46-54. PubMed ID: 23523546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]