These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26742576)

  • 21. Improvement of Energy Capacity with Vitamin C Treated Dual-Layered Graphene-Sulfur Cathodes in Lithium-Sulfur Batteries.
    Kim JW; Ocon JD; Kim HS; Lee J
    ChemSusChem; 2015 Sep; 8(17):2883-91. PubMed ID: 25925659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.
    Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atom-Thick Interlayer Made of CVD-Grown Graphene Film on Separator for Advanced Lithium-Sulfur Batteries.
    Du Z; Guo C; Wang L; Hu A; Jin S; Zhang T; Jin H; Qi Z; Xin S; Kong X; Guo YG; Ji H; Wan LJ
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43696-43703. PubMed ID: 29172433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Facile Assembly of 3D Porous Reduced Graphene Oxide/Ultrathin MnO
    Zhao X; Wang H; Zhai G; Wang G
    Chemistry; 2017 May; 23(29):7037-7045. PubMed ID: 28464356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-Dimensional Hierarchical Porous Structure of PPy/Porous-Graphene to Encapsulate Polysulfides for Lithium/Sulfur Batteries.
    Zhang Y; Bakenov Z; Tan T; Huang J
    Nanomaterials (Basel); 2018 Aug; 8(8):. PubMed ID: 30096884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A scalable graphene sulfur composite synthesis for rechargeable lithium batteries with good capacity and excellent columbic efficiency.
    Gao X; Li J; Guan D; Yuan C
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4154-9. PubMed ID: 24555988
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphene-Enveloped Poly(N-vinylcarbazole)/Sulfur Composites with Improved Performances for Lithium-Sulfur Batteries by A Simple Vibrating-Emulsification Method.
    Qu G; Cheng J; Li X; Huang L; Ni W; Wang Z; Wang B
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16668-75. PubMed ID: 26154477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene/Sulfur/Carbon Nanocomposite for High Performance Lithium-Sulfur Batteries.
    Jin K; Zhou X; Liu Z
    Nanomaterials (Basel); 2015 Sep; 5(3):1481-1492. PubMed ID: 28347077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sulfonic Groups Originated Dual-Functional Interlayer for High Performance Lithium-Sulfur Battery.
    Lu Y; Gu S; Guo J; Rui K; Chen C; Zhang S; Jin J; Yang J; Wen Z
    ACS Appl Mater Interfaces; 2017 May; 9(17):14878-14888. PubMed ID: 28406612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Amorphous Selenium and Crystalline Selenium Nanorods Graphene Composites as Cathode Materials for All-Solid-State Lithium Selenium Batteries.
    Hu H; Liu F; Shen Z; Yan R; Fu Z
    ChemistryOpen; 2022 Mar; 11(3):e202100296. PubMed ID: 35194960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Hierarchical Constructs of MOF-on-Reduced Graphene Oxide for Lithium-Sulfur Batteries.
    Wu Y; Jiang H; Ke FS; Deng H
    Chem Asian J; 2019 Oct; 14(20):3577-3582. PubMed ID: 31407470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Catalytic self-limited assembly at hard templates: a mesoscale approach to graphene nanoshells for lithium-sulfur batteries.
    Peng HJ; Liang J; Zhu L; Huang JQ; Cheng XB; Guo X; Ding W; Zhu W; Zhang Q
    ACS Nano; 2014 Nov; 8(11):11280-9. PubMed ID: 25338265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D Hollow rGO Microsphere Decorated with ZnO Nanoparticles as Efficient Sulfur Host for High-Performance Li-S Battery.
    Zhang Z; Yi Z; Liu L; Yang J; Zhang C; Pan X; Chi F
    Nanomaterials (Basel); 2020 Aug; 10(9):. PubMed ID: 32825288
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Graphene-Li2S-Carbon Nanocomposite for Lithium-Sulfur Batteries.
    Wu F; Lee JT; Zhao E; Zhang B; Yushin G
    ACS Nano; 2016 Jan; 10(1):1333-40. PubMed ID: 26647225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SnO
    Hu N; Lv X; Dai Y; Fan L; Xiong D; Li X
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18665-18674. PubMed ID: 29771116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfur-infiltrated graphene-based layered porous carbon cathodes for high-performance lithium-sulfur batteries.
    Yang X; Zhang L; Zhang F; Huang Y; Chen Y
    ACS Nano; 2014 May; 8(5):5208-15. PubMed ID: 24749945
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wet Chemistry Synthesis of Multidimensional Nanocarbon-Sulfur Hybrid Materials with Ultrahigh Sulfur Loading for Lithium-Sulfur Batteries.
    Du WC; Yin YX; Zeng XX; Shi JL; Zhang SF; Wan LJ; Guo YG
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3584-90. PubMed ID: 26378622
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-Modified Sulfur Nanorods Immobilized on Radially Assembled Open-Porous Graphene Microspheres for Lithium-Sulfur Batteries.
    Yeon JS; Yun S; Park JM; Park HS
    ACS Nano; 2019 May; 13(5):5163-5171. PubMed ID: 30860806
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polyaniline-assisted synthesis of Si@C/RGO as anode material for rechargeable lithium-ion batteries.
    Lin N; Zhou J; Wang L; Zhu Y; Qian Y
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):409-14. PubMed ID: 25494648
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.