These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26743032)

  • 21. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries.
    Lu Y; Korf K; Kambe Y; Tu Z; Archer LA
    Angew Chem Int Ed Engl; 2014 Jan; 53(2):488-92. PubMed ID: 24282090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Brannerite-Type Vanadium-Molybdenum Oxide LiVMoO₆ as a Promising Anode Material for Lithium-Ion Batteries with High Capacity and Rate Capability.
    Chen N; Wang C; Hu F; Bie X; Wei Y; Chen G; Du F
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16117-23. PubMed ID: 26154565
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by using linear fluorinated carbonates as (Co)solvent.
    Kalhoff J; Bresser D; Bolloli M; Alloin F; Sanchez JY; Passerini S
    ChemSusChem; 2014 Oct; 7(10):2939-46. PubMed ID: 25138922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opportunities and Limitations of Ionic Liquid- and Organic Carbonate Solvent-Based Electrolytes for Mg-Ion-Based Dual-Ion Batteries.
    Küpers V; Dohmann JF; Bieker P; Winter M; Placke T; Kolek M
    ChemSusChem; 2021 Oct; 14(20):4480-4498. PubMed ID: 34339580
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A near dimensionally invariable high-capacity positive electrode material.
    Konuma I; Goonetilleke D; Sharma N; Miyuki T; Hiroi S; Ohara K; Yamakawa Y; Morino Y; Rajendra HB; Ishigaki T; Yabuuchi N
    Nat Mater; 2023 Feb; 22(2):225-234. PubMed ID: 36509870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Designing electrolytes with polymerlike glass-forming properties and fast ion transport at low temperatures.
    Zhao Q; Liu X; Zheng J; Deng Y; Warren A; Zhang Q; Archer L
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26053-26060. PubMed ID: 33020296
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New chemical route for the synthesis of β-Na(0.33)V₂O₅ and its fully reversible Li intercalation.
    Kim JK; Senthilkumar B; Sahgong SH; Kim JH; Chi M; Kim Y
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):7025-32. PubMed ID: 25768692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries.
    Liao C; Guo B; Sun XG; Dai S
    ChemSusChem; 2015 Jan; 8(2):353-60. PubMed ID: 25427945
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lithium Storage in Microstructures of Amorphous Mixed-Valence Vanadium Oxide as Anode Materials.
    Zhao D; Zheng L; Xiao Y; Wang X; Cao M
    ChemSusChem; 2015 Jul; 8(13):2212-22. PubMed ID: 26018759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TiO
    Vazquez-Santos MB; Tartaj P; Morales E; Amarilla JM
    Chem Rec; 2018 Jul; 18(7-8):1178-1191. PubMed ID: 29537696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrolyte Mixtures Based on Ethylene Carbonate and Dimethyl Sulfone for Li-Ion Batteries with Improved Safety Characteristics.
    Hofmann A; Migeot M; Thißen E; Schulz M; Heinzmann R; Indris S; Bergfeldt T; Lei B; Ziebert C; Hanemann T
    ChemSusChem; 2015 Jun; 8(11):1892-900. PubMed ID: 25950145
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.
    Zheng F; Yang C; Xiong X; Xiong J; Hu R; Chen Y; Liu M
    Angew Chem Int Ed Engl; 2015 Oct; 54(44):13058-62. PubMed ID: 26335589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors.
    Wang G; Lu X; Ling Y; Zhai T; Wang H; Tong Y; Li Y
    ACS Nano; 2012 Nov; 6(11):10296-302. PubMed ID: 23050855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium/silver vanadium oxide batteries for implantable defibrillators.
    Takeuchi ES; Quattrini PJ; Greatbatch W
    Pacing Clin Electrophysiol; 1988 Nov; 11(11 Pt 2):2035-9. PubMed ID: 2463584
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries.
    Tu Z; Nath P; Lu Y; Tikekar MD; Archer LA
    Acc Chem Res; 2015 Nov; 48(11):2947-56. PubMed ID: 26496667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flame spray-pyrolyzed vanadium oxide nanoparticles for lithium battery cathodes.
    Ng SH; Patey TJ; Büchel R; Krumeich F; Wang JZ; Liu HK; Pratsinis SE; Novák P
    Phys Chem Chem Phys; 2009 May; 11(19):3748-55. PubMed ID: 19421487
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ionic Liquid Hybrid Electrolytes for Lithium-Ion Batteries: A Key Role of the Separator-Electrolyte Interface in Battery Electrochemistry.
    Huie MM; DiLeo RA; Marschilok AC; Takeuchi KJ; Takeuchi ES
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):11724-31. PubMed ID: 25710110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.