These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 26743032)
41. Robust cycling of Li-O2 batteries through the synergistic effect of blended electrolytes. Kim BG; Lee JN; Lee DJ; Park JK; Choi JW ChemSusChem; 2013 Mar; 6(3):443-8. PubMed ID: 23371842 [TBL] [Abstract][Full Text] [Related]
42. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries. Bansal D; Cassel F; Croce F; Hendrickson M; Plichta E; Salomon M J Phys Chem B; 2005 Mar; 109(10):4492-6. PubMed ID: 16851523 [TBL] [Abstract][Full Text] [Related]
43. Surfactant-Free Vanadium Oxides from Reverse Micelles and Organic Oxidants: Solution Processable Nanoribbons with Potential Applicability as Battery Insertion Electrodes Assembled in Different Configurations. Tartaj P; Amarilla JM; Vazquez-Santos MB Langmuir; 2015 Nov; 31(45):12489-96. PubMed ID: 26513340 [TBL] [Abstract][Full Text] [Related]
44. High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. Yang Y; Zheng G; Misra S; Nelson J; Toney MF; Cui Y J Am Chem Soc; 2012 Sep; 134(37):15387-94. PubMed ID: 22909273 [TBL] [Abstract][Full Text] [Related]
45. Two-cation competition in ionic-liquid-modified electrolytes for lithium ion batteries. Lee SY; Yong HH; Lee YJ; Kim SK; Ahn S J Phys Chem B; 2005 Jul; 109(28):13663-7. PubMed ID: 16852712 [TBL] [Abstract][Full Text] [Related]
46. Ultraconcentrated Sodium Bis(fluorosulfonyl)imide-Based Electrolytes for High-Performance Sodium Metal Batteries. Lee J; Lee Y; Lee J; Lee SM; Choi JH; Kim H; Kwon MS; Kang K; Lee KT; Choi NS ACS Appl Mater Interfaces; 2017 Feb; 9(4):3723-3732. PubMed ID: 28067499 [TBL] [Abstract][Full Text] [Related]
47. Co3O4/carbon aerogel hybrids as anode materials for lithium-ion batteries with enhanced electrochemical properties. Hao F; Zhang Z; Yin L ACS Appl Mater Interfaces; 2013 Sep; 5(17):8337-44. PubMed ID: 23924311 [TBL] [Abstract][Full Text] [Related]
48. Design principles for solid-state lithium superionic conductors. Wang Y; Richards WD; Ong SP; Miara LJ; Kim JC; Mo Y; Ceder G Nat Mater; 2015 Oct; 14(10):1026-31. PubMed ID: 26280225 [TBL] [Abstract][Full Text] [Related]
49. Mapping the anode surface-electrolyte interphase: investigating a life limiting process of lithium primary batteries. Bock DC; Tappero RV; Takeuchi KJ; Marschilok AC; Takeuchi ES ACS Appl Mater Interfaces; 2015 Mar; 7(9):5429-37. PubMed ID: 25690846 [TBL] [Abstract][Full Text] [Related]
50. Study on Ion-Conducting Properties of Ionic Liquid Containing Carbonate Electrolytes Against Carbon Electrode. Choi BR; Park SJ; Kim S J Nanosci Nanotechnol; 2016 Mar; 16(3):2765-8. PubMed ID: 27455705 [TBL] [Abstract][Full Text] [Related]
51. Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures. Kim MC; Nam KW; Hu E; Yang XQ; Kim H; Kang K; Aravindan V; Kim WS; Lee YS ChemSusChem; 2014 Mar; 7(3):829-34. PubMed ID: 24399460 [TBL] [Abstract][Full Text] [Related]
52. In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. Zheng S; Chen Y; Xu Y; Yi F; Zhu Y; Liu Y; Yang J; Wang C ACS Nano; 2013 Dec; 7(12):10995-1003. PubMed ID: 24251957 [TBL] [Abstract][Full Text] [Related]
53. Modelling structure and ionic diffusion in a class of ionic liquid crystal-based solid electrolytes. Khan MS; Van Roekeghem A; Mossa S; Ivol F; Bernard L; Picard L; Mingo N Phys Chem Chem Phys; 2024 Jan; 26(5):4338-4348. PubMed ID: 38234270 [TBL] [Abstract][Full Text] [Related]
54. Highly Reversible Lithium-ions Storage of Molybdenum Dioxide Nanoplates for High Power Lithium-ion Batteries. Liu X; Yang J; Hou W; Wang J; Nuli Y ChemSusChem; 2015 Aug; 8(16):2621-4. PubMed ID: 26183572 [TBL] [Abstract][Full Text] [Related]
55. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
56. Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites. Wei S; Ma L; Hendrickson KE; Tu Z; Archer LA J Am Chem Soc; 2015 Sep; 137(37):12143-52. PubMed ID: 26325146 [TBL] [Abstract][Full Text] [Related]
57. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. Huang G; Zhang F; Du X; Qin Y; Yin D; Wang L ACS Nano; 2015 Feb; 9(2):1592-9. PubMed ID: 25629650 [TBL] [Abstract][Full Text] [Related]
58. Ionic liquid electrolytes as a platform for rechargeable metal-air batteries: a perspective. Kar M; Simons TJ; Forsyth M; MacFarlane DR Phys Chem Chem Phys; 2014 Sep; 16(35):18658-74. PubMed ID: 25093926 [TBL] [Abstract][Full Text] [Related]
59. Improved Compatibility of α-NaMnO Maresca G; Ottaviani M; Ryan KM; Brutti S; Appetecchi GB ChemSusChem; 2024 May; ():e202400514. PubMed ID: 38753581 [TBL] [Abstract][Full Text] [Related]