These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26743032)

  • 61. Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes.
    Wu F; Zhou H; Bai Y; Wang H; Wu C
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15098-107. PubMed ID: 26087246
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery.
    Unemoto A; Chen C; Wang Z; Matsuo M; Ikeshoji T; Orimo S
    Nanotechnology; 2015 Jan; 26(25):254001. PubMed ID: 26041380
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of LiVPO4F to Li4Ti5O12 as anode materials for lithium-ion batteries.
    Ma R; Shao L; Wu K; Shui M; Wang D; Pan J; Long N; Ren Y; Shu J
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8615-27. PubMed ID: 23927499
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials.
    Acerce M; Voiry D; Chhowalla M
    Nat Nanotechnol; 2015 Apr; 10(4):313-8. PubMed ID: 25799518
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Ambient lithium-SO2 batteries with ionic liquids as electrolytes.
    Xing H; Liao C; Yang Q; Veith GM; Guo B; Sun XG; Ren Q; Hu YS; Dai S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2099-103. PubMed ID: 24446427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries.
    Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786
    [TBL] [Abstract][Full Text] [Related]  

  • 67. All-solid-state lithium organic battery with composite polymer electrolyte and pillar[5]quinone cathode.
    Zhu Z; Hong M; Guo D; Shi J; Tao Z; Chen J
    J Am Chem Soc; 2014 Nov; 136(47):16461-4. PubMed ID: 25383544
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Novel Slurry Electrolyte Containing Lithium Metasilicate for High Electrochemical Performance of a 5 V Cathode.
    Ren Y; Mu D; Wu F; Wu B
    ACS Appl Mater Interfaces; 2015 Oct; 7(41):22898-906. PubMed ID: 26406110
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ionic liquid electrolytes with various sodium solutes for rechargeable Na/NaFePO4 batteries operated at elevated temperatures.
    Wongittharom N; Wang CH; Wang YC; Yang CH; Chang JK
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17564-70. PubMed ID: 25295391
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High-Voltage and Noncorrosive Ionic Liquid Electrolyte Used in Rechargeable Aluminum Battery.
    Wang H; Gu S; Bai Y; Chen S; Wu F; Wu C
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27444-27448. PubMed ID: 27696799
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficient, Selective Sodium and Lithium Removal by Faradaic Deionization Using Symmetric Sodium Titanium Vanadium Phosphate Intercalation Electrodes.
    Shrivastava A; Do VQ; Smith KC
    ACS Appl Mater Interfaces; 2022 Jul; 14(27):30672-30682. PubMed ID: 35776554
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes.
    Li J; Dudney NJ; Nanda J; Liang C
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10083-8. PubMed ID: 24926882
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries.
    Giordano L; Karayaylali P; Yu Y; Katayama Y; Maglia F; Lux S; Shao-Horn Y
    J Phys Chem Lett; 2017 Aug; 8(16):3881-3887. PubMed ID: 28766340
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes.
    Lee HW; Pasta M; Wang RY; Ruffo R; Cui Y
    Faraday Discuss; 2014; 176():69-81. PubMed ID: 25406368
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Interphase Evolution of a Lithium-Ion/Oxygen Battery.
    Elia GA; Bresser D; Reiter J; Oberhumer P; Sun YK; Scrosati B; Passerini S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22638-43. PubMed ID: 26389522
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Understanding Li diffusion in Li-intercalation compounds.
    Van der Ven A; Bhattacharya J; Belak AA
    Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Benzo-Dipteridine Derivatives as Organic Cathodes for Li- and Na-ion Batteries.
    Cariello M; Johnston B; Bhosale M; Amores M; Wilson E; McCarron LJ; Wilson C; Corr SA; Cooke G
    ACS Appl Energy Mater; 2020 Sep; 3(9):8302-8308. PubMed ID: 33015587
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries.
    Zheng J; Kan WH; Manthiram A
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery.
    Hasa I; Buchholz D; Passerini S; Hassoun J
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5206-12. PubMed ID: 25692933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.