These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 26743130)
1. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure. Li Z; Ye L; Zhao X; Coates P; Caton-Rose F; Martyn M J Biomed Mater Res A; 2016 May; 104(5):1082-9. PubMed ID: 26743130 [TBL] [Abstract][Full Text] [Related]
2. Bionic structure and blood compatibility of highly oriented homo-epitaxially crystallized poly(l-lactic acid). Yang W; Wu T; Chen Y; Huang Q; Ao J; Ming M; Gao X; Li Z; Chen B Int J Biol Macromol; 2023 Feb; 227():749-761. PubMed ID: 36563816 [TBL] [Abstract][Full Text] [Related]
3. A Novel Stereocomplex Poly(lactic acid) with Shish-Kebab Crystals and Bionic Surface Structures as Bioimplant Materials for Tissue Engineering Applications. Li J; Ye W; Fan Z; Cao L ACS Appl Mater Interfaces; 2021 Feb; 13(4):5469-5477. PubMed ID: 33486951 [TBL] [Abstract][Full Text] [Related]
4. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing. Li Z; Zhao X; Ye L; Coates P; Caton-Rose F; Martyn M J Biomater Appl; 2014 Mar; 28(7):978-89. PubMed ID: 23733838 [TBL] [Abstract][Full Text] [Related]
5. Improving Mechanical Properties and Biocompatibilities by Highly Oriented Long Chain Branching Poly(lactic acid) with Bionic Surface Structures. Li J; Chen Q; Zhang Q; Fan T; Gong L; Ye W; Fan Z; Cao L ACS Appl Mater Interfaces; 2020 Mar; 12(12):14365-14375. PubMed ID: 32129593 [TBL] [Abstract][Full Text] [Related]
6. Recent progress of preparation of branched poly(lactic acid) and its application in the modification of polylactic acid materials. Zhao X; Li J; Liu J; Zhou W; Peng S Int J Biol Macromol; 2021 Dec; 193(Pt A):874-892. PubMed ID: 34728305 [TBL] [Abstract][Full Text] [Related]
7. Controlled in vitro degradation behavior of highly oriented long-chain-branched poly(lactic acid) produced by solid-phase die drawing. Li R; Li J; Zhao X; Ye L; Coates P; Caton-Rose F J Biomed Mater Res A; 2019 Jul; 107(7):1522-1531. PubMed ID: 30821039 [TBL] [Abstract][Full Text] [Related]
8. Oriented homo-epitaxial crystallization of polylactic acid displaying a biomimetic structure and improved blood compatibility. Li Z; Wu T; Chen Y; Gao X; Ye J; Jin Y; Chen B J Biomed Mater Res A; 2022 Mar; 110(3):684-695. PubMed ID: 34651453 [TBL] [Abstract][Full Text] [Related]
9. Multiple shape memory behavior of highly oriented long-chain-branched poly(lactic acid) and its recovery mechanism. Li J; Zhao X; Ye L; Coates P; Caton-Rose F J Biomed Mater Res A; 2019 Apr; 107(4):872-883. PubMed ID: 30615252 [TBL] [Abstract][Full Text] [Related]
10. Structure and antimicrobial properties of long-chain branched poly (lactic acid). Li Z; Liu L; Chen B; Zhao T; Ran L; Yuan X; Cao Z; Wu T J Biomed Mater Res A; 2019 Nov; 107(11):2458-2467. PubMed ID: 31269320 [TBL] [Abstract][Full Text] [Related]
11. Bionic structure and biocompatibilities of long chain branched poly(L-lactic acid) oriented microcellular foaming material. Chen Y; Yang W; Hu Z; Gao X; Ye J; Song X; Chen B; Li Z Int J Biol Macromol; 2024 Apr; 263(Pt 2):130467. PubMed ID: 38423433 [TBL] [Abstract][Full Text] [Related]
12. Poly(L-lactic acid) scaffold with oriented micro-valley surface and superior properties fabricated by solid-state drawing for blood-contact biomaterials. Im SH; Jung Y; Jang Y; Kim SH Biofabrication; 2016 Oct; 8(4):045010. PubMed ID: 27775924 [TBL] [Abstract][Full Text] [Related]
14. Ductile and biodegradable poly (lactic acid) matrix film with layered structure. Cao Z; Pan H; Chen Y; Han L; Bian J; Zhang H; Dong L; Yang Y Int J Biol Macromol; 2019 Sep; 137():1141-1152. PubMed ID: 31295492 [TBL] [Abstract][Full Text] [Related]
15. Significantly improving oxygen barrier properties of polylactide via constructing parallel-aligned shish-kebab-like crystals with well-interlocked boundaries. Bai H; Huang C; Xiu H; Zhang Q; Deng H; Wang K; Chen F; Fu Q Biomacromolecules; 2014 Apr; 15(4):1507-14. PubMed ID: 24617940 [TBL] [Abstract][Full Text] [Related]
16. Biocompatibility improvement and controlled in vitro degradation of poly (lactic acid)-b-poly(lactide-co-caprolactone) by formation of highly oriented structure for orthopedic application. Wang W; Liu Y; Ye L; Coates P; Caton-Rose F; Zhao X J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2480-2493. PubMed ID: 35674722 [TBL] [Abstract][Full Text] [Related]
17. Self-Reinforced PTLG Copolymer with Shish Kebab Structures and a Bionic Surface as Bioimplant Materials for Tissue Engineering Applications. Li J; Jiang P; Yang J; Zhang Q; Chen H; Wang Z; Liu C; Fan T; Cao L; Sui J ACS Appl Mater Interfaces; 2024 Feb; 16(8):11062-11075. PubMed ID: 38378449 [TBL] [Abstract][Full Text] [Related]
18. Synthesis, characterization and cell compatibility of novel poly(ester urethane)s based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) prepared by melting polymerization. Chen Z; Cheng S; Li Z; Xu K; Chen GQ J Biomater Sci Polym Ed; 2009; 20(10):1451-71. PubMed ID: 19622282 [TBL] [Abstract][Full Text] [Related]
19. Silane modified starch for compatible reactive blend with poly(lactic acid). Jariyasakoolroj P; Chirachanchai S Carbohydr Polym; 2014 Jun; 106():255-63. PubMed ID: 24721076 [TBL] [Abstract][Full Text] [Related]
20. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites. Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]