BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26743259)

  • 21. A Monte Carlo Investigation of Dose Point Kernel Scaling for α-Emitting Radionuclides.
    Khan AU; DeWerd LA
    Cancer Biother Radiopharm; 2021 Apr; 36(3):252-259. PubMed ID: 33337280
    [No Abstract]   [Full Text] [Related]  

  • 22. Improved radial dose function estimation using current version MCNP Monte-Carlo simulation: Model 6711 and ISC3500 125I brachytherapy sources.
    Duggan DM
    Appl Radiat Isot; 2004 Dec; 61(6):1443-50. PubMed ID: 15388146
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monte Carlo simulation of backscatter from lead for clinical electron beams using EGSnrc.
    Chow JC; Grigorov GN
    Med Phys; 2008 Apr; 35(4):1241-50. PubMed ID: 18491516
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Monte Carlo calculated TG-43 dosimetry parameters for the SeedLink 125Iodine brachytherapy system.
    Medich DC; Munro JJ
    Med Phys; 2003 Sep; 30(9):2503-8. PubMed ID: 14528972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte carlo electron source model validation for an Elekta Precise linac.
    Ali OA; Willemse CA; Shaw W; O'Reilly FH; du Plessis FC
    Med Phys; 2011 May; 38(5):2366-73. PubMed ID: 21776771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. IVBTMC, a Monte Carlo dose calculation tool for intravascular brachytherapy.
    Chibani O; Li XA
    Med Phys; 2003 Jan; 30(1):44-51. PubMed ID: 12557978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monte Carlo dose calculations in homogeneous media and at interfaces: a comparison between GEPTS, EGSnrc, MCNP, and measurements.
    Chibani O; Li XA
    Med Phys; 2002 May; 29(5):835-47. PubMed ID: 12033580
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the initial beam parameters in Monte Carlo linac simulation.
    Aljarrah K; Sharp GC; Neicu T; Jiang SB
    Med Phys; 2006 Apr; 33(4):850-8. PubMed ID: 16696460
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Absolute depth-dose-rate measurements for an 192Ir HDR brachytherapy source in water using MOSFET detectors.
    Zilio VO; Joneja OP; Popowski Y; Rosenfeld A; Chawla R
    Med Phys; 2006 Jun; 33(6):1532-9. PubMed ID: 16872060
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Re-evaluation of the dose to the cyst wall in P-32 radiocolloid treatments of cystic brain tumors using the dose-point-kernel and Monte Carlo methods.
    Janicki C; Seuntjens J
    Med Phys; 2003 Sep; 30(9):2475-81. PubMed ID: 14528969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling a hypothetical 170Tm source for brachytherapy applications.
    Enger SA; D'Amours M; Beaulieu L
    Med Phys; 2011 Oct; 38(10):5307-10. PubMed ID: 21992348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Monte Carlo dose characterization of a new 90Sr/90Y source with balloon for intravascular brachytherapy.
    Wang R; Li XA; Lobdell J
    Med Phys; 2003 Jan; 30(1):27-33. PubMed ID: 12557975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.
    Lymperopoulou G; Papagiannis P; Angelopoulos A; Karaiskos P; Georgiou E; Baltas D
    Med Phys; 2006 Dec; 33(12):4583-9. PubMed ID: 17278810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of electron beam obliquity on lateral buildup ratio: a Monte Carlo dosimetry evaluation.
    Chow JC; Grigorov GN
    Phys Med Biol; 2007 Jul; 52(13):3965-77. PubMed ID: 17664588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid water as phantom material for dosimetry of electron backscatter using low-energy electron beams: a Monte Carlo evaluation.
    Chow JC; Owrangi AM
    Med Phys; 2009 May; 36(5):1587-94. PubMed ID: 19544774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dosimetric characteristics of a linear array of gamma or beta-emitting seeds in intravascular irradiation: Monte Carlo studies for the AAPM TG-43/60 formalism.
    Ye SJ; Parsai EI; Feldmeier JJ
    Med Phys; 2003 Mar; 30(3):403-14. PubMed ID: 12674241
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A diffusion-leakage model coupled with dose point kernels (DPK) for dosimetry of diffusing alpha-emitters radiation therapy (DaRT).
    Khan AU; Jollota S; DeWerd LA
    Med Phys; 2024 May; 51(5):3725-3733. PubMed ID: 38284426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accurate determination of dose-point-kernel functions close to the origin using Monte Carlo simulations.
    Janicki C; Seuntjens J
    Med Phys; 2004 Apr; 31(4):814-8. PubMed ID: 15124998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of electron dose-point kernels in water generated by the Monte Carlo codes, PENELOPE, GEANT4, MCNPX, and ETRAN.
    Uusijärvi H; Chouin N; Bernhardt P; Ferrer L; Bardiès M; Forssell-Aronsson E
    Cancer Biother Radiopharm; 2009 Aug; 24(4):461-7. PubMed ID: 19694581
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Depth dependence of electron backscatter: an energy spectral and dosimetry study using Monte Carlo simulation.
    Chow JC; Owrangi AM
    Med Phys; 2009 Feb; 36(2):594-601. PubMed ID: 19291999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.