These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
329 related articles for article (PubMed ID: 26743353)
41. Fucoidan-coated CuS nanoparticles for chemo-and photothermal therapy against cancer. Jang B; Moorthy MS; Manivasagan P; Xu L; Song K; Lee KD; Kwak M; Oh J; Jin JO Oncotarget; 2018 Feb; 9(16):12649-12661. PubMed ID: 29560098 [TBL] [Abstract][Full Text] [Related]
42. In Vivo and In Vitro Biocompatibility Study of CuS Nanoparticles: Photosensitizer for Glioblastoma Photothermal Therapy. Li Y; Yang Z; Jalil AT; Saleh MM; Wu B Appl Biochem Biotechnol; 2023 Jul; 195(7):4084-4095. PubMed ID: 36652089 [TBL] [Abstract][Full Text] [Related]
43. Cao Y; Chen Z; Ran H Nanoscale; 2022 Aug; 14(33):12069-12076. PubMed ID: 35947015 [TBL] [Abstract][Full Text] [Related]
44. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy. Qin Z; Qiu M; Zhang Q; Yang S; Liao G; Xiong Z; Xu Z J Mater Chem B; 2021 Nov; 9(42):8882-8896. PubMed ID: 34693959 [TBL] [Abstract][Full Text] [Related]
46. Photothermal effects of CuS-BSA nanoparticles on H22 hepatoma-bearing mice. Dun X; Liu S; Ge N; Liu M; Li M; Zhang J; Bao H; Li B; Zhang H; Cui L Front Pharmacol; 2022; 13():1029986. PubMed ID: 36313308 [TBL] [Abstract][Full Text] [Related]
47. CuS Nanodots with Ultrahigh Efficient Renal Clearance for Positron Emission Tomography Imaging and Image-Guided Photothermal Therapy. Zhou M; Li J; Liang S; Sood AK; Liang D; Li C ACS Nano; 2015 Jul; 9(7):7085-96. PubMed ID: 26098195 [TBL] [Abstract][Full Text] [Related]
49. Cupreous Complex-Loaded Chitosan Nanoparticles for Photothermal Therapy and Chemotherapy of Oral Epithelial Carcinoma. Lin M; Wang D; Liu S; Huang T; Sun B; Cui Y; Zhang D; Sun H; Zhang H; Sun H; Yang B ACS Appl Mater Interfaces; 2015 Sep; 7(37):20801-12. PubMed ID: 26339804 [TBL] [Abstract][Full Text] [Related]
50. Vancomycin modified copper sulfide nanoparticles for photokilling of vancomycin-resistant enterococci bacteria. Zou Z; Sun J; Li Q; Pu Y; Liu J; Sun R; Wang L; Jiang T Colloids Surf B Biointerfaces; 2020 May; 189():110875. PubMed ID: 32087532 [TBL] [Abstract][Full Text] [Related]
51. Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency. Panão Costa J; Carvalho S; Jesus S; Soares E; Marques AP; Borges O AAPS PharmSciTech; 2019 Feb; 20(3):132. PubMed ID: 30820699 [TBL] [Abstract][Full Text] [Related]
52. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide. Neelgund GM; Oki A; Bandara S; Carson L J Mater Chem B; 2021 Feb; 9(7):1792-1803. PubMed ID: 33393530 [TBL] [Abstract][Full Text] [Related]
53. Protein-modified hollow copper sulfide nanoparticles carrying indocyanine green for photothermal and photodynamic therapy. Han L; Zhang Y; Chen XW; Shu Y; Wang JH J Mater Chem B; 2016 Jan; 4(1):105-112. PubMed ID: 32262813 [TBL] [Abstract][Full Text] [Related]
54. CuS-Pt(iv)-PEG-FA nanoparticles for targeted photothermal and chemotherapy. Bi H; Dai Y; Xu J; Lv R; He F; Gai S; Yang D; Yang P J Mater Chem B; 2016 Sep; 4(35):5938-5946. PubMed ID: 32263767 [TBL] [Abstract][Full Text] [Related]
55. Designed formation of Prussian Blue/CuS Janus nanostructure with enhanced NIR-I and NIR-II dual window response for tumor thermotherapy. Li D; Wang T; Li L; Zhang L; Wang C; Dong X J Colloid Interface Sci; 2022 May; 613():671-680. PubMed ID: 35065441 [TBL] [Abstract][Full Text] [Related]
57. Tumor-targeted and multi-stimuli responsive drug delivery system for near-infrared light induced chemo-phototherapy and photoacoustic tomography. Feng Q; Zhang Y; Zhang W; Shan X; Yuan Y; Zhang H; Hou L; Zhang Z Acta Biomater; 2016 Jul; 38():129-42. PubMed ID: 27090593 [TBL] [Abstract][Full Text] [Related]
58. Dual-Stimuli-Responsive, Polymer-Microsphere-Encapsulated CuS Nanoparticles for Magnetic Resonance Imaging Guided Synergistic Chemo-Photothermal Therapy. Zhang L; Yang Z; Zhu W; Ye Z; Yu Y; Xu Z; Ren J; Li P ACS Biomater Sci Eng; 2017 Aug; 3(8):1690-1701. PubMed ID: 33429651 [TBL] [Abstract][Full Text] [Related]
59. Evaluating the therapeutic efficacy of radiolabeled BSA@CuS nanoparticle-induced radio-photothermal therapy against anaplastic thyroid cancer. Zhang C; Chai J; Jia Q; Tan J; Meng Z; Li N; Yuan M IUBMB Life; 2022 May; 74(5):433-445. PubMed ID: 35112451 [TBL] [Abstract][Full Text] [Related]
60. In vitro evaluation of copper sulfide nanoparticles decorated with folic acid/chitosan as a novel pH-sensitive nanocarrier for the efficient controlled targeted delivery of cytarabine as an anticancer drug. Hamrang R; Moniri E; Heydarinasab A; Safaeijavan R Biotechnol Appl Biochem; 2023 Feb; 70(1):330-343. PubMed ID: 35561253 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]