These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Synthesis of High-Fluorescent Diphenyl-anthracene Derivatives and Application in Detection of Nitroaromatic Explosives and Fingerprint Identification. Lai J; Pan Q; Ma Q; Shan X; Chen L; Gao J Chem Asian J; 2024 Jan; 19(2):e202300775. PubMed ID: 38059381 [TBL] [Abstract][Full Text] [Related]
4. Self-assembled structures of N-alkylated bisbenzimidazolyl naphthalene in aqueous media for highly sensitive detection of picric acid. Wu YC; Luo SH; Cao L; Jiang K; Wang LY; Xie JC; Wang ZY Anal Chim Acta; 2017 Jul; 976():74-83. PubMed ID: 28576320 [TBL] [Abstract][Full Text] [Related]
5. PtII6 nanoscopic cages with an organometallic backbone as sensors for picric acid. Samanta D; Mukherjee PS Dalton Trans; 2013 Dec; 42(48):16784-95. PubMed ID: 24076961 [TBL] [Abstract][Full Text] [Related]
6. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. Liu SG; Luo D; Li N; Zhang W; Lei JL; Li NB; Luo HQ ACS Appl Mater Interfaces; 2016 Aug; 8(33):21700-9. PubMed ID: 27471907 [TBL] [Abstract][Full Text] [Related]
7. Al-based metal-organic gels for selective fluorescence recognition of hydroxyl nitro aromatic compounds. Guo MX; Yang L; Jiang ZW; Peng ZW; Li YF Spectrochim Acta A Mol Biomol Spectrosc; 2017 Dec; 187():43-48. PubMed ID: 28651241 [TBL] [Abstract][Full Text] [Related]
8. Anthracene based AIEgen for picric acid detection in real water samples. Gowri A; Vignesh R; Kathiravan A Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117144. PubMed ID: 31141777 [TBL] [Abstract][Full Text] [Related]
9. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets. Sandhu S; Kumar R; Singh P; Mahajan A; Kaur M; Kumar S ACS Appl Mater Interfaces; 2015 May; 7(19):10491-500. PubMed ID: 25915852 [TBL] [Abstract][Full Text] [Related]
10. Multicomponent assembly of fluorescent-tag functionalized ligands in metal-organic frameworks for sensing explosives. Gole B; Bar AK; Mukherjee PS Chemistry; 2014 Oct; 20(41):13321-36. PubMed ID: 25164426 [TBL] [Abstract][Full Text] [Related]
12. Fundamental Study of Electrospun Pyrene-Polyethersulfone Nanofibers Using Mixed Solvents for Sensitive and Selective Explosives Detection in Aqueous Solution. Sun X; Liu Y; Shaw G; Carrier A; Dey S; Zhao J; Lei Y ACS Appl Mater Interfaces; 2015 Jun; 7(24):13189-97. PubMed ID: 26030223 [TBL] [Abstract][Full Text] [Related]
13. Detection of nitroaromatics based on aggregation induced emission of barbituric acid derivatives. Zhang HJ; Tian Y; Tao FR; Yu W; You KY; Zhou LR; Su X; Li TD; Cui YZ Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117168. PubMed ID: 31226612 [TBL] [Abstract][Full Text] [Related]
14. Anthracene-based fluorescent probe: Synthesis, characterization, aggregation-induced emission, mechanochromism, and sensing of nitroaromatics in aqueous media. Duraimurugan K; Harikrishnan M; Madhavan J; Siva A; Lee SJ; Theerthagiri J; Choi MY Environ Res; 2021 Mar; 194():110741. PubMed ID: 33450234 [TBL] [Abstract][Full Text] [Related]
15. Curcumin-derivatives as fluorescence-electrochemical dual probe for ultrasensitive detections of picric acid in aqueous media. Rai A; Jha NS; Sharma P; Tiwari S; Subramanian R Talanta; 2024 Aug; 275():126113. PubMed ID: 38669958 [TBL] [Abstract][Full Text] [Related]
16. H-Bonding Interactions Induced Two Isostructural Cd(II) Metal-Organic Frameworks Showing Different Selective Detection of Nitroaromatic Explosives. Wang ZJ; Qin L; Chen JX; Zheng HG Inorg Chem; 2016 Nov; 55(21):10999-11005. PubMed ID: 27767307 [TBL] [Abstract][Full Text] [Related]
17. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Banerjee B; Ali A; Kumar S; Verma RK; Verma VK; Singh RC Chempluschem; 2024 Aug; 89(8):e202400035. PubMed ID: 38552142 [TBL] [Abstract][Full Text] [Related]
18. Highly selective detection of trinitrophenol by luminescent functionalized reduced graphene oxide through FRET mechanism. Dinda D; Gupta A; Shaw BK; Sadhu S; Saha SK ACS Appl Mater Interfaces; 2014 Jul; 6(13):10722-8. PubMed ID: 24934337 [TBL] [Abstract][Full Text] [Related]
19. Aggregation-Induced Emission (AIE)-Labeled Cellulose Nanocrystals for the Detection of Nitrophenolic Explosives in Aqueous Solutions. Ye X; Wang H; Yu L; Zhou J Nanomaterials (Basel); 2019 May; 9(5):. PubMed ID: 31067707 [TBL] [Abstract][Full Text] [Related]
20. A supramolecular Tröger's base derived coordination zinc polymer for fluorescent sensing of phenolic-nitroaromatic explosives in water. Shanmugaraju S; Dabadie C; Byrne K; Savyasachi AJ; Umadevi D; Schmitt W; Kitchen JA; Gunnlaugsson T Chem Sci; 2017 Feb; 8(2):1535-1546. PubMed ID: 28572910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]