These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
322 related articles for article (PubMed ID: 26743523)
21. REDUCED CHLOROPLAST COVERAGE proteins are required for plastid proliferation and carotenoid accumulation in tomato. Hu Q; Zhang H; Song Y; Song L; Zhu L; Kuang H; Larkin RM Plant Physiol; 2024 Sep; 196(1):511-534. PubMed ID: 38748600 [TBL] [Abstract][Full Text] [Related]
22. Transcriptome Analysis Provides a Preliminary Regulation Route of the Ethylene Signal Transduction Component, SlEIN2, during Tomato Ripening. Wang RH; Yuan XY; Meng LH; Zhu BZ; Zhu HL; Luo YB; Fu DQ PLoS One; 2016; 11(12):e0168287. PubMed ID: 27973616 [TBL] [Abstract][Full Text] [Related]
23. Semi-dominant effects of a novel ripening inhibitor (rin) locus allele on tomato fruit ripening. Ito Y; Nakamura N; Kotake-Nara E PLoS One; 2021; 16(4):e0249575. PubMed ID: 33886595 [TBL] [Abstract][Full Text] [Related]
24. Characterization of prolycopene-accumulated Tan Prashanth PJE; Rajesh N; Nandin MA; Kumar JS; Anjana B; Pinjari OB J Biosci; 2023; 48():. PubMed ID: 38047489 [TBL] [Abstract][Full Text] [Related]
25. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. Su L; Diretto G; Purgatto E; Danoun S; Zouine M; Li Z; Roustan JP; Bouzayen M; Giuliano G; Chervin C BMC Plant Biol; 2015 May; 15():114. PubMed ID: 25953041 [TBL] [Abstract][Full Text] [Related]
26. A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Zhang J; Hu Z; Yao Q; Guo X; Nguyen V; Li F; Chen G Sci Rep; 2018 Feb; 8(1):3413. PubMed ID: 29467500 [TBL] [Abstract][Full Text] [Related]
27. Galactinol synthase 2 influences the metabolism of chlorophyll, carotenoids, and ethylene in tomato fruits. Zhang H; Zhang K; Zhao X; Bi M; Liu Y; Wang S; He Y; Ma K; Qi M J Exp Bot; 2024 Jun; 75(11):3337-3350. PubMed ID: 38486362 [TBL] [Abstract][Full Text] [Related]
28. A STAY-GREEN protein SlSGR1 regulates lycopene and β-carotene accumulation by interacting directly with SlPSY1 during ripening processes in tomato. Luo Z; Zhang J; Li J; Yang C; Wang T; Ouyang B; Li H; Giovannoni J; Ye Z New Phytol; 2013 Apr; 198(2):442-452. PubMed ID: 23406468 [TBL] [Abstract][Full Text] [Related]
29. Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Liu Y; Roof S; Ye Z; Barry C; van Tuinen A; Vrebalov J; Bowler C; Giovannoni J Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9897-902. PubMed ID: 15178762 [TBL] [Abstract][Full Text] [Related]
30. AtPDS overexpression in tomato: exposing unique patterns of carotenoid self-regulation and an alternative strategy for the enhancement of fruit carotenoid content. McQuinn RP; Wong B; Giovannoni JJ Plant Biotechnol J; 2018 Feb; 16(2):482-494. PubMed ID: 28703352 [TBL] [Abstract][Full Text] [Related]
32. TOMATO AGAMOUS-LIKE 1 is a component of the fruit ripening regulatory network. Itkin M; Seybold H; Breitel D; Rogachev I; Meir S; Aharoni A Plant J; 2009 Dec; 60(6):1081-95. PubMed ID: 19891701 [TBL] [Abstract][Full Text] [Related]
33. SlMYB72 Regulates the Metabolism of Chlorophylls, Carotenoids, and Flavonoids in Tomato Fruit. Wu M; Xu X; Hu X; Liu Y; Cao H; Chan H; Gong Z; Yuan Y; Luo Y; Feng B; Li Z; Deng W Plant Physiol; 2020 Jul; 183(3):854-868. PubMed ID: 32414899 [TBL] [Abstract][Full Text] [Related]
34. Ethylene activation of carotenoid biosynthesis by a novel transcription factor CsERF061. Zhu K; Sun Q; Chen H; Mei X; Lu S; Ye J; Chai L; Xu Q; Deng X J Exp Bot; 2021 Apr; 72(8):3137-3154. PubMed ID: 33543285 [TBL] [Abstract][Full Text] [Related]
35. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation. Gao M; Qu H; Gao L; Chen L; Sebastian RS; Zhao L Plant Biol (Stuttg); 2015 Jan; 17(1):1-8. PubMed ID: 24750468 [TBL] [Abstract][Full Text] [Related]
36. Solar UV-B radiation influences carotenoid accumulation of tomato fruit through both ethylene-dependent and -independent mechanisms. Becatti E; Petroni K; Giuntini D; Castagna A; Calvenzani V; Serra G; Mensuali-Sodi A; Tonelli C; Ranieri A J Agric Food Chem; 2009 Nov; 57(22):10979-89. PubMed ID: 19877686 [TBL] [Abstract][Full Text] [Related]
37. Carotenoid biosynthesis profiling unveils the variance of flower coloration in Tagetes erecta and enhances fruit pigmentation in tomato. Qiu Y; Wang R; Zhang E; Shang Y; Feng G; Wang W; Ma Y; Bai W; Zhang W; Xu Z; Shi W; Niu X Plant Sci; 2024 Oct; 347():112207. PubMed ID: 39084492 [TBL] [Abstract][Full Text] [Related]
38. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Jones B; Frasse P; Olmos E; Zegzouti H; Li ZG; Latché A; Pech JC; Bouzayen M Plant J; 2002 Nov; 32(4):603-13. PubMed ID: 12445130 [TBL] [Abstract][Full Text] [Related]
39. Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea. Zhu C; Yang Q; Ni X; Bai C; Sheng Y; Shi L; Capell T; Sandmann G; Christou P Physiol Plant; 2014 Apr; 150(4):493-504. PubMed ID: 24256196 [TBL] [Abstract][Full Text] [Related]
40. A tomato MADS-box transcription factor, SlMADS1, acts as a negative regulator of fruit ripening. Dong T; Hu Z; Deng L; Wang Y; Zhu M; Zhang J; Chen G Plant Physiol; 2013 Oct; 163(2):1026-36. PubMed ID: 24006286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]