BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 26743777)

  • 1. Cellular uptake and intracellular degradation of poly(alkyl cyanoacrylate) nanoparticles.
    Sulheim E; Baghirov H; von Haartman E; Bøe A; Åslund AK; Mørch Y; Davies Cde L
    J Nanobiotechnology; 2016 Jan; 14():1. PubMed ID: 26743777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cabazitaxel-loaded poly(alkyl cyanoacrylate) nanoparticles: toxicity and changes in the proteome of breast, colon and prostate cancer cells.
    Øverbye A; Torgersen ML; Sønstevold T; Iversen TG; Mørch Ý; Skotland T; Sandvig K
    Nanotoxicology; 2021 Sep; 15(7):865-884. PubMed ID: 34047629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of poly(ethylene glycol) coating and monomer type on poly(alkyl cyanoacrylate) nanoparticle interactions with lipid monolayers and cells.
    Baghirov H; Melikishvili S; Mørch Y; Sulheim E; Åslund AKO; Hianik T; de Lange Davies C
    Colloids Surf B Biointerfaces; 2017 Feb; 150():373-383. PubMed ID: 27842930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-shell type of nanoparticles composed of poly[(n-butyl cyanoacrylate)-co-(2-octyl cyanoacrylate)] copolymers for drug delivery application: synthesis, characterization and in vitro degradation.
    Huang CY; Lee YD
    Int J Pharm; 2006 Nov; 325(1-2):132-9. PubMed ID: 16857330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro and in vivo evaluation of 10-hydroxycamptothecin-loaded poly (n-butyl cyanoacrylate) nanoparticles prepared by miniemulsion polymerization.
    Jin X; Asghar S; Zhu X; Chen Z; Tian C; Yin L; Ping Q; Xiao Y
    Colloids Surf B Biointerfaces; 2018 Feb; 162():25-34. PubMed ID: 29145001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular trafficking and cellular uptake mechanism of PHBV nanoparticles for targeted delivery in epithelial cell lines.
    Peñaloza JP; Márquez-Miranda V; Cabaña-Brunod M; Reyes-Ramírez R; Llancalahuen FM; Vilos C; Maldonado-Biermann F; Velásquez LA; Fuentes JA; González-Nilo FD; Rodríguez-Díaz M; Otero C
    J Nanobiotechnology; 2017 Jan; 15(1):1. PubMed ID: 28049488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Epirubicin loading in poly(butyl cyanoacrylate) nanoparticles manifests via altered intracellular localization and cellular response in cervical carcinoma (HeLa) cells.
    Evangelatov A; Skrobanska R; Mladenov N; Petkova M; Yordanov G; Pankov R
    Drug Deliv; 2016 Sep; 23(7):2235-2244. PubMed ID: 25268149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Variants of poly(alkylcyanoacrylate) Nanoparticles Differentially Affect LC3 and Autophagic Cargo Degradation.
    Sønstevold T; Engedal N; Mørch Ý; Iversen TG; Skotland T; Sandvig K; Torgersen ML
    J Biomed Nanotechnol; 2020 Apr; 16(4):432-445. PubMed ID: 32970976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Box-Behnken optimization design and enhanced oral bioavailability of thymopentin-loaded poly (butyl cyanoacrylate) nanoparticles.
    Jin X; Huang A; Ping Q; Cao F; Su Z
    Pharmazie; 2011 May; 66(5):339-47. PubMed ID: 21699067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From poly(alkyl cyanoacrylate) to squalene as core material for the design of nanomedicines.
    Mura S; Fattal E; Nicolas J
    J Drug Target; 2019; 27(5-6):470-501. PubMed ID: 30720372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hyaluronic acid coated poly(butyl cyanoacrylate) nanoparticles as anticancer drug carriers.
    He M; Zhao Z; Yin L; Tang C; Yin C
    Int J Pharm; 2009 May; 373(1-2):165-73. PubMed ID: 19429302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced oral bioavailability of 10-hydroxycamptothecin through the use of poly (n-butyl cyanoacrylate) nanospheres.
    Jin X; Asghar S; Zhu X; Chen Z; Liu J; Li Y; Li H; Ping Q; Xiao Y
    Drug Dev Ind Pharm; 2017 Oct; 43(10):1637-1647. PubMed ID: 28481657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Poly(styrene-alt-maleic anhydride)-based diblock copolymer micelles exhibit versatile hydrophobic drug loading, drug-dependent release, and internalization by multidrug resistant ovarian cancer cells.
    Baranello MP; Bauer L; Benoit DS
    Biomacromolecules; 2014 Jul; 15(7):2629-41. PubMed ID: 24955779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study of Orally Delivered PBCA and ApoE Coupled BSA Nanoparticles for Brain Targeting of Sumatriptan Succinate in Therapeutic Management of Migraine.
    Girotra P; Singh SK
    Pharm Res; 2016 Jul; 33(7):1682-95. PubMed ID: 27003706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs. 1. In vitro evaluations.
    Shenoy D; Little S; Langer R; Amiji M
    Mol Pharm; 2005; 2(5):357-66. PubMed ID: 16196488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contact-mediated intracellular delivery of hydrophobic drugs from polymeric nanoparticles.
    Snipstad S; Westrøm S; Mørch Y; Afadzi M; Åslund AK; de Lange Davies C
    Cancer Nanotechnol; 2014; 5(1):8. PubMed ID: 25774230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(alkylcyanoacrylate) nanoparticles for enhanced delivery of therapeutics - is there real potential?
    Graf A; McDowell A; Rades T
    Expert Opin Drug Deliv; 2009 Apr; 6(4):371-87. PubMed ID: 19382881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polycaprolactone/maltodextrin nanocarrier for intracellular drug delivery: formulation, uptake mechanism, internalization kinetics, and subcellular localization.
    Korang-Yeboah M; Gorantla Y; Paulos SA; Sharma P; Chaudhary J; Palaniappan R
    Int J Nanomedicine; 2015; 10():4763-81. PubMed ID: 26251597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the intracellular release mechanism of hydrophobic cargo and its relation to the biodegradation behavior of mesoporous silica nanocarriers.
    von Haartman E; Lindberg D; Prabhakar N; Rosenholm JM
    Eur J Pharm Sci; 2016 Dec; 95():17-27. PubMed ID: 27267567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-density lipoprotein receptor-mediated endocytosis of PEGylated nanoparticles in rat brain endothelial cells.
    Kim HR; Gil S; Andrieux K; Nicolas V; Appel M; Chacun H; Desmaële D; Taran F; Georgin D; Couvreur P
    Cell Mol Life Sci; 2007 Feb; 64(3):356-64. PubMed ID: 17256088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.