BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 26743821)

  • 1. Altered functional connectivity in persistent developmental stuttering.
    Yang Y; Jia F; Siok WT; Tan LH
    Sci Rep; 2016 Jan; 6():19128. PubMed ID: 26743821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional neural circuits that underlie developmental stuttering.
    Qiao J; Wang Z; Zhao G; Huo Y; Herder CL; Sikora CO; Peterson BS
    PLoS One; 2017; 12(7):e0179255. PubMed ID: 28759567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered effective connectivity and anomalous anatomy in the basal ganglia-thalamocortical circuit of stuttering speakers.
    Lu C; Peng D; Chen C; Ning N; Ding G; Li K; Yang Y; Lin C
    Cortex; 2010 Jan; 46(1):49-67. PubMed ID: 19375076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disrupted white matter in language and motor tracts in developmental stuttering.
    Connally EL; Ward D; Howell P; Watkins KE
    Brain Lang; 2014 Apr; 131():25-35. PubMed ID: 23819900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain correlates of stuttering and syllable production. A PET performance-correlation analysis.
    Fox PT; Ingham RJ; Ingham JC; Zamarripa F; Xiong JH; Lancaster JL
    Brain; 2000 Oct; 123 ( Pt 10)():1985-2004. PubMed ID: 11004117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural network connectivity differences in children who stutter.
    Chang SE; Zhu DC
    Brain; 2013 Dec; 136(Pt 12):3709-26. PubMed ID: 24131593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The neurological underpinnings of cluttering: Some initial findings.
    Ward D; Connally EL; Pliatsikas C; Bretherton-Furness J; Watkins KE
    J Fluency Disord; 2015 Mar; 43():1-16. PubMed ID: 25662409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifted dynamic interactions between subcortical nuclei and inferior frontal gyri during response preparation in persistent developmental stuttering.
    Metzger FL; Auer T; Helms G; Paulus W; Frahm J; Sommer M; Neef NE
    Brain Struct Funct; 2018 Jan; 223(1):165-182. PubMed ID: 28741037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of trait and state in stuttering.
    Connally EL; Ward D; Pliatsikas C; Finnegan S; Jenkinson M; Boyles R; Watkins KE
    Hum Brain Mapp; 2018 Aug; 39(8):3109-3126. PubMed ID: 29624772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. rsfMRI based evidence for functional connectivity alterations in adults with developmental stuttering.
    Shojaeilangari S; Radman N; Taghizadeh ME; Soltanian-Zadeh H
    Heliyon; 2021 Sep; 7(9):e07855. PubMed ID: 34504967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural anomaly and reorganization in speakers who stutter: a short-term intervention study.
    Lu C; Chen C; Peng D; You W; Zhang X; Ding G; Deng X; Yan Q; Howell P
    Neurology; 2012 Aug; 79(7):625-32. PubMed ID: 22875083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and functional abnormalities of the motor system in developmental stuttering.
    Watkins KE; Smith SM; Davis S; Howell P
    Brain; 2008 Jan; 131(Pt 1):50-9. PubMed ID: 17928317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examining resting state functional connectivity and frequency power analysis in adults who stutter compared to adults who do not stutter.
    Valaei A; Bamdad S; Golfam A; Golmohammadi G; Ameri H; Raoufy MR
    Front Hum Neurosci; 2024; 18():1338966. PubMed ID: 38375364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speaking-related changes in cortical functional connectivity associated with assisted and spontaneous recovery from developmental stuttering.
    Kell CA; Neumann K; Behrens M; von Gudenberg AW; Giraud AL
    J Fluency Disord; 2018 Mar; 55():135-144. PubMed ID: 28216127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Severity of dysfluency correlates with basal ganglia activity in persistent developmental stuttering.
    Giraud AL; Neumann K; Bachoud-Levi AC; von Gudenberg AW; Euler HA; Lanfermann H; Preibisch C
    Brain Lang; 2008 Feb; 104(2):190-9. PubMed ID: 17531310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.
    Toyomura A; Fujii T; Kuriki S
    Neuroimage; 2015 Apr; 109():458-68. PubMed ID: 25595501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. White matter pathways in persistent developmental stuttering: Lessons from tractography.
    Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    J Fluency Disord; 2018 Mar; 55():68-83. PubMed ID: 29050641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering.
    Jossinger S; Kronfeld-Duenias V; Zislis A; Amir O; Ben-Shachar M
    Brain Struct Funct; 2021 Apr; 226(3):801-816. PubMed ID: 33538875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.