BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 26744089)

  • 1. Inversion of hematocrit partition at microfluidic bifurcations.
    Shen Z; Coupier G; Kaoui B; Polack B; Harting J; Misbah C; Podgorski T
    Microvasc Res; 2016 May; 105():40-6. PubMed ID: 26744089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of red blood cell distributions in three-dimensional microvascular bifurcations.
    Hyakutake T; Nagai S
    Microvasc Res; 2015 Jan; 97():115-23. PubMed ID: 25446286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Red blood cell lingering modulates hematocrit distribution in the microcirculation.
    Rashidi Y; Simionato G; Zhou Q; John T; Kihm A; Bendaoud M; Krüger T; Bernabeu MO; Kaestner L; Laschke MW; Menger MD; Wagner C; Darras A
    Biophys J; 2023 Apr; 122(8):1526-1537. PubMed ID: 36932676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple red blood cell flows through microvascular bifurcations: cell free layer, cell trajectory, and hematocrit separation.
    Yin X; Thomas T; Zhang J
    Microvasc Res; 2013 Sep; 89():47-56. PubMed ID: 23727384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A few upstream bifurcations drive the spatial distribution of red blood cells in model microfluidic networks.
    Merlo A; Berg M; Duru P; Risso F; Davit Y; Lorthois S
    Soft Matter; 2022 Feb; 18(7):1463-1478. PubMed ID: 35088062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of capillary dilation on the distribution of red blood cells in artificial networks.
    Schmid F; Reichold J; Weber B; Jenny P
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(7):H733-42. PubMed ID: 25617356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Red blood cell phase separation in symmetric and asymmetric microchannel networks: effect of capillary dilation and inflow velocity.
    Clavica F; Homsy A; Jeandupeux L; Obrist D
    Sci Rep; 2016 Nov; 6():36763. PubMed ID: 27857165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red blood cells stabilize flow in brain microvascular networks.
    Schmid F; Barrett MJP; Obrist D; Weber B; Jenny P
    PLoS Comput Biol; 2019 Aug; 15(8):e1007231. PubMed ID: 31469820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic analysis of pressure drop and flow behavior in hypertensive micro vessels.
    Hu R; Li F; Lv J; He Y; Lu D; Yamada T; Ono N
    Biomed Microdevices; 2015; 17(3):9959. PubMed ID: 26004808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational analysis of nitric oxide biotransport in a microvessel influenced by red blood cells.
    Wei Y; Mu L; Tang Y; Shen Z; He Y
    Microvasc Res; 2019 Sep; 125():103878. PubMed ID: 31051161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro study on the partitioning of red blood cells using a microchannel network.
    Hyakutake T; Abe H; Miyoshi Y; Yasui M; Suzuki R; Tsurumaki S; Tsutsumi Y
    Microvasc Res; 2022 Mar; 140():104281. PubMed ID: 34871649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.
    Ye SS; Ju M; Kim S
    Microvasc Res; 2016 Jul; 106():14-23. PubMed ID: 26969106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Partitioning of dense RBC suspensions in single microfluidic bifurcations: role of cell deformability and bifurcation angle.
    Stathoulopoulos A; Passos A; Kaliviotis E; Balabani S
    Sci Rep; 2024 Jan; 14(1):535. PubMed ID: 38177195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radial dispersion of red blood cells in blood flowing through glass capillaries: the role of hematocrit and geometry.
    Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T
    J Biomech; 2008 Jul; 41(10):2188-96. PubMed ID: 18589429
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emergent behaviors in RBCs flows in micro-channels using digital particle image velocimetry.
    Cairone F; Ortiz D; Cabrales PJ; Intaglietta M; Bucolo M
    Microvasc Res; 2018 Mar; 116():77-86. PubMed ID: 28918110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental estimation of blood flow velocity through simulation of intravital microscopic imaging in micro-vessels by different image processing methods.
    Huang TC; Lin WC; Wu CC; Zhang G; Lin KP
    Microvasc Res; 2010 Dec; 80(3):477-83. PubMed ID: 20659483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-dimensional lattice Boltzmann study of red blood cell motion through microvascular bifurcation: cell deformability and suspending viscosity effects.
    Xiong W; Zhang J
    Biomech Model Mechanobiol; 2012 Mar; 11(3-4):575-83. PubMed ID: 21744014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.