These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26744766)

  • 1. Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production.
    Click KA; Beauchamp DR; Huang Z; Chen W; Wu Y
    J Am Chem Soc; 2016 Feb; 138(4):1174-9. PubMed ID: 26744766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dye-sensitized photocathodes for oxygen reduction: efficient H
    Sun J; Yu Y; Curtze AE; Liang X; Wu Y
    Chem Sci; 2019 Jun; 10(21):5519-5527. PubMed ID: 31293736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dye-sensitized photoelectrochemical water oxidation through a buried junction.
    Xu P; Huang T; Huang J; Yan Y; Mallouk TE
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6946-6951. PubMed ID: 29915092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production.
    Li J; Gao X; Liu B; Feng Q; Li XB; Huang MY; Liu Z; Zhang J; Tung CH; Wu LZ
    J Am Chem Soc; 2016 Mar; 138(12):3954-7. PubMed ID: 26962887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustainable hydrogen production from water using tandem dye-sensitized photoelectrochemical cells.
    Sherman BD; McMillan NK; Willinger D; Leem G
    Nano Converg; 2021 Mar; 8(1):7. PubMed ID: 33650039
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon decorated with amorphous cobalt molybdenum sulfide catalyst as an efficient photocathode for solar hydrogen generation.
    Chen Y; Tran PD; Boix P; Ren Y; Chiam SY; Li Z; Fu K; Wong LH; Barber J
    ACS Nano; 2015 Apr; 9(4):3829-36. PubMed ID: 25801437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial dynamics and solar fuel formation in dye-sensitized photoelectrosynthesis cells.
    Song W; Chen Z; Glasson CR; Hanson K; Luo H; Norris MR; Ashford DL; Concepcion JJ; Brennaman MK; Meyer TJ
    Chemphyschem; 2012 Aug; 13(12):2882-90. PubMed ID: 22715164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen Production at a NiO Photocathode Based on a Ruthenium Dye-Cobalt Diimine Dioxime Catalyst Assembly: Insights from Advanced Spectroscopy and Post-operando Characterization.
    Giannoudis E; Bold S; Müller C; Schwab A; Bruhnke J; Queyriaux N; Gablin C; Leonard D; Saint-Pierre C; Gasparutto D; Aldakov D; Kupfer S; Artero V; Dietzek B; Chavarot-Kerlidou M
    ACS Appl Mater Interfaces; 2021 Oct; 13(42):49802-49815. PubMed ID: 34637266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solar H
    Creissen CE; Warnan J; Reisner E
    Chem Sci; 2018 Feb; 9(6):1439-1447. PubMed ID: 29629169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst.
    Morales-Guio CG; Tilley SD; Vrubel H; Grätzel M; Hu X
    Nat Commun; 2014; 5():3059. PubMed ID: 24402352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells.
    Swierk JR; McCool NS; Saunders TP; Barber GD; Mallouk TE
    J Am Chem Soc; 2014 Aug; 136(31):10974-82. PubMed ID: 25068176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photostable p-type dye-sensitized photoelectrochemical cells for water reduction.
    Ji Z; He M; Huang Z; Ozkan U; Wu Y
    J Am Chem Soc; 2013 Aug; 135(32):11696-9. PubMed ID: 23895560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS
    Fan R; Mao J; Yin Z; Jie J; Dong W; Fang L; Zheng F; Shen M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6123-6129. PubMed ID: 28128543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Dye-Sensitized Tandem Photoelectrochemical Cell for Light Driven Total Water Splitting.
    Li F; Fan K; Xu B; Gabrielsson E; Daniel Q; Li L; Sun L
    J Am Chem Soc; 2015 Jul; 137(28):9153-9. PubMed ID: 26132113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirhodium(II,II)/NiO Photocathode for Photoelectrocatalytic Hydrogen Evolution with Red Light.
    Huang J; Sun J; Wu Y; Turro C
    J Am Chem Soc; 2021 Jan; 143(3):1610-1617. PubMed ID: 33426881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-Light-Driven Water Oxidation on a Photoanode by Supramolecular Assembly of Photosensitizer and Catalyst.
    Li H; Li F; Wang Y; Bai L; Yu F; Sun L
    Chempluschem; 2016 Oct; 81(10):1056-1059. PubMed ID: 31964080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum Disulfide as a Protection Layer and Catalyst for Gallium Indium Phosphide Solar Water Splitting Photocathodes.
    Britto RJ; Benck JD; Young JL; Hahn C; Deutsch TG; Jaramillo TF
    J Phys Chem Lett; 2016 Jun; 7(11):2044-9. PubMed ID: 27196435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.