These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 26744897)
1. Net shape fabrication of calcium phosphate scaffolds with multiple material domains. Xie Y; Rustom LE; McDermott AM; Boerckel JD; Johnson AJ; Alleyne AG; Hoelzle DJ Biofabrication; 2016 Jan; 8(1):015005. PubMed ID: 26744897 [TBL] [Abstract][Full Text] [Related]
2. Design and manufacture of combinatorial calcium phosphate bone scaffolds. Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326 [TBL] [Abstract][Full Text] [Related]
3. 3D plotting of growth factor loaded calcium phosphate cement scaffolds. Akkineni AR; Luo Y; Schumacher M; Nies B; Lode A; Gelinsky M Acta Biomater; 2015 Nov; 27():264-274. PubMed ID: 26318366 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility of hydroxyapatite scaffolds processed by lithography-based additive manufacturing. Tesavibul P; Chantaweroad S; Laohaprapanon A; Channasanon S; Uppanan P; Tanodekaew S; Chalermkarnnon P; Sitthiseripratip K Biomed Mater Eng; 2015; 26(1-2):31-8. PubMed ID: 26484553 [TBL] [Abstract][Full Text] [Related]
5. 3D powder printed tetracalcium phosphate scaffold with phytic acid binder: fabrication, microstructure and in situ X-Ray tomography analysis of compressive failure. Mandal S; Meininger S; Gbureck U; Basu B J Mater Sci Mater Med; 2018 Mar; 29(3):29. PubMed ID: 29520670 [TBL] [Abstract][Full Text] [Related]
6. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of computationally designed scaffolds by low temperature 3D printing. Castilho M; Dias M; Gbureck U; Groll J; Fernandes P; Pires I; Gouveia B; Rodrigues J; Vorndran E Biofabrication; 2013 Sep; 5(3):035012. PubMed ID: 23887064 [TBL] [Abstract][Full Text] [Related]
8. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes. Butscher A; Bohner M; Doebelin N; Hofmann S; Müller R Acta Biomater; 2013 Nov; 9(11):9149-58. PubMed ID: 23891808 [TBL] [Abstract][Full Text] [Related]
9. Development of a bone substitute material based on alpha-tricalcium phosphate scaffold coated with carbonate apatite/poly-epsilon-caprolactone. Bang LT; Ramesh S; Purbolaksono J; Long BD; Chandran H; Ramesh S; Othman R Biomed Mater; 2015 Jul; 10(4):045011. PubMed ID: 26225725 [TBL] [Abstract][Full Text] [Related]
10. Microporous calcium phosphate ceramics as tissue engineering scaffolds for the repair of osteochondral defects: Histological results. Bernstein A; Niemeyer P; Salzmann G; Südkamp NP; Hube R; Klehm J; Menzel M; von Eisenhart-Rothe R; Bohner M; Görz L; Mayr HO Acta Biomater; 2013 Jul; 9(7):7490-505. PubMed ID: 23528497 [TBL] [Abstract][Full Text] [Related]
11. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777 [TBL] [Abstract][Full Text] [Related]
12. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
13. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]
14. Design and Fabrication of Complex Scaffolds for Bone Defect Healing: Combined 3D Plotting of a Calcium Phosphate Cement and a Growth Factor-Loaded Hydrogel. Ahlfeld T; Akkineni AR; Förster Y; Köhler T; Knaack S; Gelinsky M; Lode A Ann Biomed Eng; 2017 Jan; 45(1):224-236. PubMed ID: 27384939 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of individual scaffolds based on a patient-specific alveolar bone defect model. Li J; Zhang L; Lv S; Li S; Wang N; Zhang Z J Biotechnol; 2011 Jan; 151(1):87-93. PubMed ID: 21056602 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting. Gao L; Li C; Chen F; Liu C Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985 [TBL] [Abstract][Full Text] [Related]
17. Structure design and manufacturing of layered bioceramic scaffolds for load-bearing bone reconstruction. Yang JZ; Hu XZ; Sultana R; Edward Day R; Ichim P Biomed Mater; 2015 Jul; 10(4):045006. PubMed ID: 26154898 [TBL] [Abstract][Full Text] [Related]
18. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions. Lode A; Meyer M; Brüggemeier S; Paul B; Baltzer H; Schröpfer M; Winkelmann C; Sonntag F; Gelinsky M Biofabrication; 2016 Feb; 8(1):015015. PubMed ID: 26924825 [TBL] [Abstract][Full Text] [Related]
19. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Lin K; Wu C; Chang J Acta Biomater; 2014 Oct; 10(10):4071-102. PubMed ID: 24954909 [TBL] [Abstract][Full Text] [Related]
20. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]