These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 26744897)
21. Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Wang H; Zhi W; Lu X; Li X; Duan K; Duan R; Mu Y; Weng J Acta Biomater; 2013 Sep; 9(9):8413-21. PubMed ID: 23732684 [TBL] [Abstract][Full Text] [Related]
22. Development of a collagen calcium-phosphate scaffold as a novel bone graft substitute. Al-Munajjed AA; Gleeson JP; O'Brien FJ Stud Health Technol Inform; 2008; 133():11-20. PubMed ID: 18376009 [TBL] [Abstract][Full Text] [Related]
24. A mechanism for effective cell-seeding in rigid, microporous substrates. Polak SJ; Rustom LE; Genin GM; Talcott M; Wagoner Johnson AJ Acta Biomater; 2013 Aug; 9(8):7977-86. PubMed ID: 23665116 [TBL] [Abstract][Full Text] [Related]
25. Surface energy and stiffness discrete gradients in additive manufactured scaffolds for osteochondral regeneration. Di Luca A; Longoni A; Criscenti G; Lorenzo-Moldero I; Klein-Gunnewiek M; Vancso J; van Blitterswijk C; Mota C; Moroni L Biofabrication; 2016 Feb; 8(1):015014. PubMed ID: 26924824 [TBL] [Abstract][Full Text] [Related]
26. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering. Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988 [TBL] [Abstract][Full Text] [Related]
27. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering. Kumbar SG; Toti US; Deng M; James R; Laurencin CT; Aravamudhan A; Harmon M; Ramos DM Biomed Mater; 2011 Dec; 6(6):065005. PubMed ID: 22089383 [TBL] [Abstract][Full Text] [Related]
28. Unique microstructural design of ceramic scaffolds for bone regeneration under load. Roohani-Esfahani SI; Dunstan CR; Li JJ; Lu Z; Davies B; Pearce S; Field J; Williams R; Zreiqat H Acta Biomater; 2013 Jun; 9(6):7014-24. PubMed ID: 23467040 [TBL] [Abstract][Full Text] [Related]
29. Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing. Reed S; Lau G; Delattre B; Lopez DD; Tomsia AP; Wu BM Biofabrication; 2016 Jan; 8(1):015003. PubMed ID: 26741113 [TBL] [Abstract][Full Text] [Related]
30. In vitro cell proliferation evaluation of porous nano-zirconia scaffolds with different porosity for bone tissue engineering. Zhu Y; Zhu R; Ma J; Weng Z; Wang Y; Shi X; Li Y; Yan X; Dong Z; Xu J; Tang C; Jin L Biomed Mater; 2015 Sep; 10(5):055009. PubMed ID: 26391576 [TBL] [Abstract][Full Text] [Related]
31. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related]
32. Biomimetic calcium phosphate crystal mineralization on electrospun cellulose-based scaffolds. Rodríguez K; Renneckar S; Gatenholm P ACS Appl Mater Interfaces; 2011 Mar; 3(3):681-9. PubMed ID: 21355545 [TBL] [Abstract][Full Text] [Related]
34. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Zhou Z; Buchanan F; Mitchell C; Dunne N Mater Sci Eng C Mater Biol Appl; 2014 May; 38():1-10. PubMed ID: 24656346 [TBL] [Abstract][Full Text] [Related]
35. 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Trombetta R; Inzana JA; Schwarz EM; Kates SL; Awad HA Ann Biomed Eng; 2017 Jan; 45(1):23-44. PubMed ID: 27324800 [TBL] [Abstract][Full Text] [Related]
36. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering. Declercq HA; Desmet T; Berneel EE; Dubruel P; Cornelissen MJ Acta Biomater; 2013 Aug; 9(8):7699-708. PubMed ID: 23669624 [TBL] [Abstract][Full Text] [Related]
37. Effects of different crosslinking methods on the properties of collagen-calcium phosphate composite materials. Kozłowska J; Sionkowska A Int J Biol Macromol; 2015 Mar; 74():397-403. PubMed ID: 25542169 [TBL] [Abstract][Full Text] [Related]
38. [The preparation, structure evaluation and preliminary application of biomimetic biphasic calcium phosphate scaffold]. Peng J; Wang AY; Sun MX; Xu WJ; Huang JX; Zhao B; Zhang L; Tian JM; Dong LM; Lu SB Zhonghua Wai Ke Za Zhi; 2005 Jun; 43(12):807-11. PubMed ID: 16083586 [TBL] [Abstract][Full Text] [Related]
39. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds. Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739 [TBL] [Abstract][Full Text] [Related]
40. Additive manufacturing of wet-spun polymeric scaffolds for bone tissue engineering. Puppi D; Mota C; Gazzarri M; Dinucci D; Gloria A; Myrzabekova M; Ambrosio L; Chiellini F Biomed Microdevices; 2012 Dec; 14(6):1115-27. PubMed ID: 22767245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]