BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 26744898)

  • 1. BWM*: A Novel, Provable, Ensemble-based Dynamic Programming Algorithm for Sparse Approximations of Computational Protein Design.
    Jou JD; Jain S; Georgiev IS; Donald BR
    J Comput Biol; 2016 Jun; 23(6):413-24. PubMed ID: 26744898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical analysis of computational protein design with sparse residue interaction graphs.
    Jain S; Jou JD; Georgiev IS; Donald BR
    PLoS Comput Biol; 2017 Mar; 13(3):e1005346. PubMed ID: 28358804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BBK* (Branch and Bound Over K*): A Provable and Efficient Ensemble-Based Protein Design Algorithm to Optimize Stability and Binding Affinity Over Large Sequence Spaces.
    Ojewole AA; Jou JD; Fowler VG; Donald BR
    J Comput Biol; 2018 Jul; 25(7):726-739. PubMed ID: 29641249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minimization-Aware Recursive
    Jou JD; Holt GT; Lowegard AU; Donald BR
    J Comput Biol; 2020 Apr; 27(4):550-564. PubMed ID: 31855059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel, provable algorithms for efficient ensemble-based computational protein design and their application to the redesign of the c-Raf-RBD:KRas protein-protein interface.
    Lowegard AU; Frenkel MS; Holt GT; Jou JD; Ojewole AA; Donald BR
    PLoS Comput Biol; 2020 Jun; 16(6):e1007447. PubMed ID: 32511232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational Protein Design Using AND/OR Branch-and-Bound Search.
    Zhou Y; Wu Y; Zeng J
    J Comput Biol; 2016 Jun; 23(6):439-51. PubMed ID: 27167301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast gap-free enumeration of conformations and sequences for protein design.
    Roberts KE; Gainza P; Hallen MA; Donald BR
    Proteins; 2015 Oct; 83(10):1859-1877. PubMed ID: 26235965
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles.
    Georgiev I; Lilien RH; Donald BR
    J Comput Chem; 2008 Jul; 29(10):1527-42. PubMed ID: 18293294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An algebraic geometry approach to protein structure determination from NMR data.
    Wang L; Mettu RR; Donald BR
    Proc IEEE Comput Syst Bioinform Conf; 2005; ():235-46. PubMed ID: 16447981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dead-end elimination with perturbations (DEEPer): a provable protein design algorithm with continuous sidechain and backbone flexibility.
    Hallen MA; Keedy DA; Donald BR
    Proteins; 2013 Jan; 81(1):18-39. PubMed ID: 22821798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. LUTE (Local Unpruned Tuple Expansion): Accurate Continuously Flexible Protein Design with General Energy Functions and Rigid Rotamer-Like Efficiency.
    Hallen MA; Jou JD; Donald BR
    J Comput Biol; 2017 Jun; 24(6):536-546. PubMed ID: 27681371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of sequence-reactivity space for protein-protein interactions.
    Li J; Yi Z; Laskowski MC; Laskowski M; Bailey-Kellogg C
    Proteins; 2005 Feb; 58(3):661-71. PubMed ID: 15624216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deterministic Search Methods for Computational Protein Design.
    Traoré S; Allouche D; André I; Schiex T; Barbe S
    Methods Mol Biol; 2017; 1529():107-123. PubMed ID: 27914047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fast search algorithms for computational protein design.
    Traoré S; Roberts KE; Allouche D; Donald BR; André I; Schiex T; Barbe S
    J Comput Chem; 2016 May; 37(12):1048-58. PubMed ID: 26833706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction.
    Saleh S; Olson B; Shehu A
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S4. PubMed ID: 24565020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. cOSPREY: A Cloud-Based Distributed Algorithm for Large-Scale Computational Protein Design.
    Pan Y; Dong Y; Zhou J; Hallen M; Donald BR; Zeng J; Xu W
    J Comput Biol; 2016 Sep; 23(9):737-49. PubMed ID: 27154509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parallel Computational Protein Design.
    Zhou Y; Donald BR; Zeng J
    Methods Mol Biol; 2017; 1529():265-277. PubMed ID: 27914056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OSPREY Predicts Resistance Mutations Using Positive and Negative Computational Protein Design.
    Ojewole A; Lowegard A; Gainza P; Reeve SM; Georgiev I; Anderson AC; Donald BR
    Methods Mol Biol; 2017; 1529():291-306. PubMed ID: 27914058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. comets (Constrained Optimization of Multistate Energies by Tree Search): A Provable and Efficient Protein Design Algorithm to Optimize Binding Affinity and Specificity with Respect to Sequence.
    Hallen MA; Donald BR
    J Comput Biol; 2016 May; 23(5):311-21. PubMed ID: 26761641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.