These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 26744992)
1. A multicomponent molecular approach to artificial photosynthesis - the role of fullerenes and endohedral metallofullerenes. Rudolf M; Kirner SV; Guldi DM Chem Soc Rev; 2016 Feb; 45(3):612-30. PubMed ID: 26744992 [TBL] [Abstract][Full Text] [Related]
2. Solar fuels via artificial photosynthesis. Gust D; Moore TA; Moore AL Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921 [TBL] [Abstract][Full Text] [Related]
3. Porphyrin-fullerene linked systems as artificial photosynthetic mimics. Imahori H Org Biomol Chem; 2004 May; 2(10):1425-33. PubMed ID: 15136797 [TBL] [Abstract][Full Text] [Related]
4. Biomimetic and microbial approaches to solar fuel generation. Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805 [TBL] [Abstract][Full Text] [Related]
5. Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers. El-Khouly ME; Fukuzumi S; D'Souza F Chemphyschem; 2014 Jan; 15(1):30-47. PubMed ID: 24243758 [TBL] [Abstract][Full Text] [Related]
6. Long-lived charge separation and applications in artificial photosynthesis. Fukuzumi S; Ohkubo K; Suenobu T Acc Chem Res; 2014 May; 47(5):1455-64. PubMed ID: 24793793 [TBL] [Abstract][Full Text] [Related]
7. Self-regulation of photoinduced electron transfer by a molecular nonlinear transducer. Straight SD; Kodis G; Terazono Y; Hambourger M; Moore TA; Moore AL; Gust D Nat Nanotechnol; 2008 May; 3(5):280-3. PubMed ID: 18654524 [TBL] [Abstract][Full Text] [Related]
8. DFT calculations on the structural stability and infrared spectroscopy of endohedral metallofullerenes. Peng S; Zhang Y; Li XJ; Ren Y; Zhang DX Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(2):553-7. PubMed ID: 19651537 [TBL] [Abstract][Full Text] [Related]
9. The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. Rodríguez-Fortea A; Alegret N; Balch AL; Poblet JM Nat Chem; 2010 Nov; 2(11):955-61. PubMed ID: 20966952 [TBL] [Abstract][Full Text] [Related]
10. Current status and future developments of endohedral metallofullerenes. Lu X; Feng L; Akasaka T; Nagase S Chem Soc Rev; 2012 Dec; 41(23):7723-60. PubMed ID: 22907208 [TBL] [Abstract][Full Text] [Related]
11. Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Kalyanasundaram K; Graetzel M Curr Opin Biotechnol; 2010 Jun; 21(3):298-310. PubMed ID: 20439158 [TBL] [Abstract][Full Text] [Related]
12. Endohedral metallofullerenes-filled fullerene derivatives towards multifunctional reaction center mimics. Rudolf M; Wolfrum S; Guldi DM; Feng L; Tsuchiya T; Akasaka T; Echegoyen L Chemistry; 2012 Apr; 18(17):5136-48. PubMed ID: 22461206 [TBL] [Abstract][Full Text] [Related]
13. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts. Wen F; Li C Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891 [TBL] [Abstract][Full Text] [Related]
14. Photosynthetic antenna-reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin and fullerene. Maligaspe E; Tkachenko NV; Subbaiyan NK; Chitta R; Zandler ME; Lemmetyinen H; D'Souza F J Phys Chem A; 2009 Jul; 113(30):8478-89. PubMed ID: 19580310 [TBL] [Abstract][Full Text] [Related]
15. Carotenoids as electron or excited-state energy donors in artificial photosynthesis: an ultrafast investigation of a carotenoporphyrin and a carotenofullerene dyad. Pillai S; Ravensbergen J; Antoniuk-Pablant A; Sherman BD; van Grondelle R; Frese RN; Moore TA; Gust D; Moore AL; Kennis JT Phys Chem Chem Phys; 2013 Apr; 15(13):4775-84. PubMed ID: 23435870 [TBL] [Abstract][Full Text] [Related]
16. Artificial photosynthetic reaction centers coupled to light-harvesting antennas. Ghosh PK; Smirnov AY; Nori F Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061138. PubMed ID: 22304071 [TBL] [Abstract][Full Text] [Related]
17. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Wasielewski MR Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479 [TBL] [Abstract][Full Text] [Related]
18. Peptide-Modulated Self-Assembly of Chromophores toward Biomimetic Light-Harvesting Nanoarchitectonics. Zou Q; Liu K; Abbas M; Yan X Adv Mater; 2016 Feb; 28(6):1031-43. PubMed ID: 26273821 [TBL] [Abstract][Full Text] [Related]
19. Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. D'Souza F; Smith PM; Zandler ME; McCarty AL; Itou M; Araki Y; Ito O J Am Chem Soc; 2004 Jun; 126(25):7898-907. PubMed ID: 15212538 [TBL] [Abstract][Full Text] [Related]
20. Learning from photosynthesis: how to use solar energy to make fuels. Cogdell RJ; Gardiner AT; Cronin L Philos Trans A Math Phys Eng Sci; 2012 Aug; 370(1972):3819-26. PubMed ID: 22753828 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]