These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 26745330)

  • 1. Connecting Metallic Nanoparticles by Optical Printing.
    Gargiulo J; Cerrota S; Cortés E; Violi IL; Stefani FD
    Nano Lett; 2016 Feb; 16(2):1224-9. PubMed ID: 26745330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding and Reducing Photothermal Forces for the Fabrication of Au Nanoparticle Dimers by Optical Printing.
    Gargiulo J; Brick T; Violi IL; Herrera FC; Shibanuma T; Albella P; Requejo FG; Cortés E; Maier SA; Stefani FD
    Nano Lett; 2017 Sep; 17(9):5747-5755. PubMed ID: 28806511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optothermal Manipulations of Colloidal Particles and Living Cells.
    Lin L; Hill EH; Peng X; Zheng Y
    Acc Chem Res; 2018 Jun; 51(6):1465-1474. PubMed ID: 29799720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Funneling of Colloidal Gold Nanoparticles on Printed Arrays of End-Grafted Polymers for Plasmonic Applications.
    Pekdemir S; Torun I; Sakir M; Ruzi M; Rogers JA; Onses MS
    ACS Nano; 2020 Jul; 14(7):8276-8286. PubMed ID: 32569462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis.
    Lin L; Peng X; Wang M; Scarabelli L; Mao Z; Liz-Marzán LM; Becker MF; Zheng Y
    ACS Nano; 2016 Oct; 10(10):9659-9668. PubMed ID: 27640212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy and Mechanistic Details of Optical Printing of Single Au and Ag Nanoparticles.
    Gargiulo J; Violi IL; Cerrota S; Chvátal L; Cortés E; Perassi EM; Diaz F; Zemánek P; Stefani FD
    ACS Nano; 2017 Oct; 11(10):9678-9688. PubMed ID: 28853862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-step injection of gold nanoparticles through phospholipid membranes.
    Urban AS; Pfeiffer T; Fedoruk M; Lutich AA; Feldmann J
    ACS Nano; 2011 May; 5(5):3585-90. PubMed ID: 21488672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opto-thermophoretic fiber tweezers.
    Kotnala A; Zheng Y
    Nanophotonics; 2019 Mar; 8(3):475-485. PubMed ID: 34290953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures.
    Zhang X; Liu H; Feng S
    Nanotechnology; 2009 Oct; 20(42):425303. PubMed ID: 19779226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels.
    Peng X; Li J; Lin L; Liu Y; Zheng Y
    ACS Appl Nano Mater; 2018 Aug; 1(8):3998-4004. PubMed ID: 31106296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser trapping of colloidal metal nanoparticles.
    Lehmuskero A; Johansson P; Rubinsztein-Dunlop H; Tong L; Käll M
    ACS Nano; 2015; 9(4):3453-69. PubMed ID: 25808609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermophoresis suppression by graphene layer in tunable plasmonic tweezers based on hexagonal arrays of gold triangles: numerical study.
    Samadi M; Darbari S; Moravvej-Farshi MK
    Opt Express; 2021 Aug; 29(18):29056-29067. PubMed ID: 34615023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shaping Metallic Nanolattices: Design by Microcontact Printing from Wrinkled Stamps.
    Wang X; Sperling M; Reifarth M; Böker A
    Small; 2020 Mar; 16(11):e1906721. PubMed ID: 32091182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Opto-thermophoretic separation and trapping of plasmonic nanoparticles.
    Setoura K; Tsuji T; Ito S; Kawano S; Miyasaka H
    Nanoscale; 2019 Nov; 11(44):21093-21102. PubMed ID: 31402358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and Thermophoretic Control of Janus Nanopen Injection into Living Cells.
    Maier CM; Huergo MA; Milosevic S; Pernpeintner C; Li M; Singh DP; Walker D; Fischer P; Feldmann J; Lohmüller T
    Nano Lett; 2018 Dec; 18(12):7935-7941. PubMed ID: 30468387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser printing single gold nanoparticles.
    Urban AS; Lutich AA; Stefani FD; Feldmann J
    Nano Lett; 2010 Dec; 10(12):4794-8. PubMed ID: 20957994
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grating-flanked plasmonic coaxial apertures for efficient fiber optical tweezers.
    Saleh AA; Sheikhoelislami S; Gastelum S; Dionne JA
    Opt Express; 2016 Sep; 24(18):20593-603. PubMed ID: 27607663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical Printing of Single Au Nanostars.
    Martinez LP; Poklepovich-Caride S; Gargiulo J; Martínez ED; Stefani FD; Angelomé PC; Violi IL
    Nano Lett; 2023 Apr; 23(7):2703-2709. PubMed ID: 36952678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gap Effect on Electric Field Enhancement and Photothermal Conversion in Gold Nanostructures.
    Chiba H; Kodama K; Okada K; Ichikawa Y; Motosuke M
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630269
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension.
    Zhang Q; Li R; Lee E; Luo T
    Nano Lett; 2021 Jul; 21(13):5485-5492. PubMed ID: 33939430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.