These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26745417)

  • 1. Nanoscale, Voltage-Driven Application of Bioactive Substances onto Cells with Organized Topography.
    Schobesberger S; Jönsson P; Buzuk A; Korchev Y; Siggers J; Gorelik J
    Biophys J; 2016 Jan; 110(1):141-6. PubMed ID: 26745417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Surface Charge Visualization of Human Hair.
    Maddar FM; Perry D; Brooks R; Page A; Unwin PR
    Anal Chem; 2019 Apr; 91(7):4632-4639. PubMed ID: 30807113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous mapping of nanoscale topography and surface potential of charged surfaces by scanning ion conductance microscopy.
    Chen F; Panday N; Li X; Ma T; Guo J; Wang X; Kos L; Hu K; Gu N; He J
    Nanoscale; 2020 Oct; 12(40):20737-20748. PubMed ID: 33030171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale imaging of rat atrial myocytes by scanning ion conductance microscopy reveals heterogeneity of T-tubule openings and ultrastructure of the cell membrane.
    Park SH; Kim A; An J; Cho HS; Kang TM
    Korean J Physiol Pharmacol; 2020 Nov; 24(6):529-543. PubMed ID: 33093274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional scanning ion conductance microscopy.
    Page A; Perry D; Unwin PR
    Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160889. PubMed ID: 28484332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of T-tubules and other changes to surface topography in ventricular myocytes from failing human and rat heart.
    Lyon AR; MacLeod KT; Zhang Y; Garcia E; Kanda GK; Lab MJ; Korchev YE; Harding SE; Gorelik J
    Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6854-9. PubMed ID: 19342485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scanning Ion Conductance Microscopy: Quantitative Nanopipette Delivery-Substrate Electrode Collection Measurements and Mapping.
    Chen B; Perry D; Page A; Kang M; Unwin PR
    Anal Chem; 2019 Feb; 91(3):2516-2524. PubMed ID: 30608117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-resolution scanning patch clamp reveals clustering of functional ion channels in adult ventricular myocyte.
    Bhargava A; Lin X; Novak P; Mehta K; Korchev Y; Delmar M; Gorelik J
    Circ Res; 2013 Apr; 112(8):1112-1120. PubMed ID: 23438901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alternative configuration scheme for signal amplification with scanning ion conductance microscopy.
    Kim J; Kim SO; Cho NJ
    Rev Sci Instrum; 2015 Feb; 86(2):023706. PubMed ID: 25725851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scanning ion-conductance microscopy with a double-barreled nanopipette for topographic imaging of charged chromosomes.
    Iwata F; Shirasawa T; Mizutani Y; Ushiki T
    Microscopy (Oxf); 2021 Oct; 70(5):423-435. PubMed ID: 33644794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel Z-groove index characterizing myocardial surface structure.
    Gorelik J; Yang LQ; Zhang Y; Lab M; Korchev Y; Harding SE
    Cardiovasc Res; 2006 Dec; 72(3):422-9. PubMed ID: 17054929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential-Concentration Scanning Ion Conductance Microscopy.
    Perry D; Page A; Chen B; Frenguelli BG; Unwin PR
    Anal Chem; 2017 Nov; 89(22):12458-12465. PubMed ID: 28992688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High Speed Scanning Ion Conductance Microscopy for Quantitative Analysis of Nanoscale Dynamics of Microvilli.
    Ida H; Takahashi Y; Kumatani A; Shiku H; Matsue T
    Anal Chem; 2017 Jun; 89(11):6015-6020. PubMed ID: 28481079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous Nanoscale Surface Charge and Topographical Mapping.
    Perry D; Al Botros R; Momotenko D; Kinnear SL; Unwin PR
    ACS Nano; 2015 Jul; 9(7):7266-76. PubMed ID: 26132922
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new scanning mode to improve scanning ion conductance microscopy imaging rate with pipette predicted movement.
    Zhuang J; Jiao Y; Mugabo V
    Micron; 2017 Oct; 101():177-185. PubMed ID: 28763735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolonged mechanical unloading affects cardiomyocyte excitation-contraction coupling, transverse-tubule structure, and the cell surface.
    Ibrahim M; Al Masri A; Navaratnarajah M; Siedlecka U; Soppa GK; Moshkov A; Al-Saud SA; Gorelik J; Yacoub MH; Terracciano CM
    FASEB J; 2010 Sep; 24(9):3321-9. PubMed ID: 20430793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning ion conductance microscopy for imaging biological samples in liquid: a comparative study with atomic force microscopy and scanning electron microscopy.
    Ushiki T; Nakajima M; Choi M; Cho SJ; Iwata F
    Micron; 2012 Dec; 43(12):1390-8. PubMed ID: 22425359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angular Approach Scanning Ion Conductance Microscopy.
    Shevchuk A; Tokar S; Gopal S; Sanchez-Alonso JL; Tarasov AI; Vélez-Ortega AC; Chiappini C; Rorsman P; Stevens MM; Gorelik J; Frolenkov GI; Klenerman D; Korchev YE
    Biophys J; 2016 May; 110(10):2252-65. PubMed ID: 27224490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning ion conductance microscopy: a nanotechnology for biological studies in live cells.
    Liu BC; Lu XY; Song X; Lei KY; Alli AA; Bao HF; Eaton DC; Ma HP
    Front Physiol; 2012; 3():483. PubMed ID: 23335899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlative Analysis of Ion-Concentration Profile and Surface Nanoscale Topography Changes Using Operando Scanning Ion Conductance Microscopy.
    Takahashi Y; Takamatsu D; Korchev Y; Fukuma T
    JACS Au; 2023 Apr; 3(4):1089-1099. PubMed ID: 37124299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.