BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 26745424)

  • 1. Label-free Imaging of Microtubules with Sub-nm Precision Using Interferometric Scattering Microscopy.
    Andrecka J; Ortega Arroyo J; Lewis K; Cross RA; Kukura P
    Biophys J; 2016 Jan; 110(1):214-7. PubMed ID: 26745424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Interference Reflection and Total Internal Reflection Fluorescence Microscopy for Imaging Dynamic Microtubules and Associated Proteins.
    Tuna Y; Al-Hiyasat A; Howard J
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-Free Imaging of Single Microtubule Dynamics Using Spatial Light Interference Microscopy.
    Kandel ME; Teng KW; Selvin PR; Popescu G
    ACS Nano; 2017 Jan; 11(1):647-655. PubMed ID: 27997798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implementation of Interference Reflection Microscopy for Label-free, High-speed Imaging of Microtubules.
    Mahamdeh M; Howard J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Microtubule Dynamics Assays Using Dark-Field Microscopy.
    Spector JO; Vemu A; Roll-Mecak A
    Methods Mol Biol; 2020; 2101():39-51. PubMed ID: 31879897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free high-speed wide-field imaging of single microtubules using interference reflection microscopy.
    Mahamdeh M; Simmert S; Luchniak A; Schäffer E; Howard J
    J Microsc; 2018 Oct; 272(1):60-66. PubMed ID: 30044498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging.
    Ortega Arroyo J; Cole D; Kukura P
    Nat Protoc; 2016 Apr; 11(4):617-33. PubMed ID: 26938114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasensitive Label-Free Nanosensing and High-Speed Tracking of Single Proteins.
    Liebel M; Hugall JT; van Hulst NF
    Nano Lett; 2017 Feb; 17(2):1277-1281. PubMed ID: 28088861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Reconstitution of Microtubule Dynamics and Severing Imaged by Label-Free Interference-Reflection Microscopy.
    Kuo YW; Howard J
    Methods Mol Biol; 2022; 2430():73-91. PubMed ID: 35476326
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Hirst WG; Kiefer C; Abdosamadi MK; Schäffer E; Reber S
    STAR Protoc; 2020 Dec; 1(3):100177. PubMed ID: 33377071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional interferometric scattering microscopy via remote focusing technique.
    Lee IB; Moon HM; Park JS; Zambochova K; Hong SC; Cho M
    Opt Lett; 2020 May; 45(9):2628-2631. PubMed ID: 32356833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites.
    Piliarik M; Sandoghdar V
    Nat Commun; 2014 Jul; 5():4495. PubMed ID: 25072241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscopic Structural Fluctuations of Disassembling Microtubules Revealed by Label-Free Super-Resolution Microscopy.
    Vala M; Bujak Ł; García Marín A; Holanová K; Henrichs V; Braun M; Lánský Z; Piliarik M
    Small Methods; 2021 Apr; 5(4):e2000985. PubMed ID: 34927839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fluorescent GTP analog as a specific, high-precision label of microtubules.
    Anderson EK; Martin DS
    Biotechniques; 2011 Jul; 51(1):43-8. PubMed ID: 21781052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Label-free Imaging and Bending Analysis of Microtubules by ROCS Microscopy and Optical Trapping.
    Koch MD; Rohrbach A
    Biophys J; 2018 Jan; 114(1):168-177. PubMed ID: 29320684
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of the angle of single fluorophore attached to the nucleotide in corkscrewing microtubules.
    Fujimura S; Ito Y; Ikeguchi M; Adachi K; Yajima J; Nishizaka T
    Biochem Biophys Res Commun; 2017 Apr; 485(3):614-620. PubMed ID: 28257843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of dynamic instability of steady-state microtubules in vitro by video-enhanced differential interference contrast microscopy with an appendix by Emin Oroudjev.
    Yenjerla M; Lopus M; Wilson L
    Methods Cell Biol; 2010; 95():189-206. PubMed ID: 20466136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interferometric Scattering Microscopy for the Study of Molecular Motors.
    Andrecka J; Takagi Y; Mickolajczyk KJ; Lippert LG; Sellers JR; Hancock WO; Goldman YE; Kukura P
    Methods Enzymol; 2016; 581():517-539. PubMed ID: 27793291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferometric scattering microscopy (iSCAT): new frontiers in ultrafast and ultrasensitive optical microscopy.
    Ortega-Arroyo J; Kukura P
    Phys Chem Chem Phys; 2012 Dec; 14(45):15625-36. PubMed ID: 22996289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure.
    Shtengel G; Galbraith JA; Galbraith CG; Lippincott-Schwartz J; Gillette JM; Manley S; Sougrat R; Waterman CM; Kanchanawong P; Davidson MW; Fetter RD; Hess HF
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3125-30. PubMed ID: 19202073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.