BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 26745721)

  • 1. Strengthening of Mg based alloy through grain refinement for orthopaedic application.
    Nayak S; Bhushan B; Jayaganthan R; Gopinath P; Agarwal RD; Lahiri D
    J Mech Behav Biomed Mater; 2016 Jun; 59():57-70. PubMed ID: 26745721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials.
    Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C
    Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications.
    Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J
    Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement.
    Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H
    Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications.
    Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M
    Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices.
    Farabi E; Sharp JA; Vahid A; Fabijanic DM; Barnett MR; Gallo SC
    Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111897. PubMed ID: 33641900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling.
    Seong JW; Kim WJ
    Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance.
    Bornapour M; Celikin M; Cerruti M; Pekguleryuz M
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories.
    Jaiswal S; Kumar RM; Gupta P; Kumaraswamy M; Roy P; Lahiri D
    J Mech Behav Biomed Mater; 2018 Feb; 78():442-454. PubMed ID: 29232643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress corrosion cracking and corrosion fatigue characterisation of MgZn1Ca0.3 (ZX10) in a simulated physiological environment.
    Jafari S; Raman RKS; Davies CHJ; Hofstetter J; Uggowitzer PJ; Löffler JF
    J Mech Behav Biomed Mater; 2017 Jan; 65():634-643. PubMed ID: 27741493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material.
    Ibrahim H; Klarner AD; Poorganji B; Dean D; Luo AA; Elahinia M
    J Mech Behav Biomed Mater; 2017 May; 69():203-212. PubMed ID: 28088072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials.
    Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J
    J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and biodegradability of Mg-Zn-Ca alloys: homogenization heat treatment and hot rolling.
    Incesu A; Gungor A
    J Mater Sci Mater Med; 2020 Nov; 31(12):123. PubMed ID: 33247812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.
    Zhang M; Cai S; Zhang F; Xu G; Wang F; Yu N; Wu X
    J Mater Sci Mater Med; 2017 Jun; 28(6):82. PubMed ID: 28424946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application.
    Shuai C; Zhou Y; Lin X; Yang Y; Gao C; Shuai X; Wu H; Liu X; Wu P; Feng P
    J Mater Sci Mater Med; 2017 Jan; 28(1):13. PubMed ID: 27995491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.
    Hakimi O; Aghion E; Goldman J
    Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process.
    Wang HX; Guan SK; Wang X; Ren CX; Wang LG
    Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation.
    Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications.
    Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys.
    Lu Y; Bradshaw AR; Chiu YL; Jones IP
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.