These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
557 related articles for article (PubMed ID: 26745721)
1. Strengthening of Mg based alloy through grain refinement for orthopaedic application. Nayak S; Bhushan B; Jayaganthan R; Gopinath P; Agarwal RD; Lahiri D J Mech Behav Biomed Mater; 2016 Jun; 59():57-70. PubMed ID: 26745721 [TBL] [Abstract][Full Text] [Related]
2. Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn-5Ge alloy for biodegradable implant materials. Tong X; Zhang D; Zhang X; Su Y; Shi Z; Wang K; Lin J; Li Y; Lin J; Wen C Acta Biomater; 2018 Dec; 82():197-204. PubMed ID: 30316837 [TBL] [Abstract][Full Text] [Related]
3. Impact of gadolinium on mechanical properties, corrosion resistance, and biocompatibility of Zn-1Mg-xGd alloys for biodegradable bone-implant applications. Tong X; Zhu L; Wang K; Shi Z; Huang S; Li Y; Ma J; Wen C; Lin J Acta Biomater; 2022 Apr; 142():361-373. PubMed ID: 35189378 [TBL] [Abstract][Full Text] [Related]
4. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Hu N; Xie L; Liao Q; Gao A; Zheng Y; Pan H; Tong L; Yang D; Gao N; Starink MJ; Chu PK; Wang H Acta Biomater; 2021 May; 126():524-536. PubMed ID: 33684537 [TBL] [Abstract][Full Text] [Related]
5. Fabrication, mechanical properties and in vitro degradation behavior of newly developed ZnAg alloys for degradable implant applications. Sikora-Jasinska M; Mostaed E; Mostaed A; Beanland R; Mantovani D; Vedani M Mater Sci Eng C Mater Biol Appl; 2017 Aug; 77():1170-1181. PubMed ID: 28531993 [TBL] [Abstract][Full Text] [Related]
6. Development of high strength and ductile Zn-Al-Li alloys for potential use in bioresorbable medical devices. Farabi E; Sharp JA; Vahid A; Fabijanic DM; Barnett MR; Gallo SC Mater Sci Eng C Mater Biol Appl; 2021 Mar; 122():111897. PubMed ID: 33641900 [TBL] [Abstract][Full Text] [Related]
7. Development of biodegradable Mg-Ca alloy sheets with enhanced strength and corrosion properties through the refinement and uniform dispersion of the Mg₂Ca phase by high-ratio differential speed rolling. Seong JW; Kim WJ Acta Biomater; 2015 Jan; 11():531-42. PubMed ID: 25246310 [TBL] [Abstract][Full Text] [Related]
8. Magnesium implant alloy with low levels of strontium and calcium: the third element effect and phase selection improve bio-corrosion resistance and mechanical performance. Bornapour M; Celikin M; Cerruti M; Pekguleryuz M Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():267-82. PubMed ID: 24411378 [TBL] [Abstract][Full Text] [Related]
9. Mechanical, corrosion and biocompatibility behaviour of Mg-3Zn-HA biodegradable composites for orthopaedic fixture accessories. Jaiswal S; Kumar RM; Gupta P; Kumaraswamy M; Roy P; Lahiri D J Mech Behav Biomed Mater; 2018 Feb; 78():442-454. PubMed ID: 29232643 [TBL] [Abstract][Full Text] [Related]
11. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Ibrahim H; Klarner AD; Poorganji B; Dean D; Luo AA; Elahinia M J Mech Behav Biomed Mater; 2017 May; 69():203-212. PubMed ID: 28088072 [TBL] [Abstract][Full Text] [Related]
12. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
13. Mechanical properties and biodegradability of Mg-Zn-Ca alloys: homogenization heat treatment and hot rolling. Incesu A; Gungor A J Mater Sci Mater Med; 2020 Nov; 31(12):123. PubMed ID: 33247812 [TBL] [Abstract][Full Text] [Related]
14. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy. Zhang M; Cai S; Zhang F; Xu G; Wang F; Yu N; Wu X J Mater Sci Mater Med; 2017 Jun; 28(6):82. PubMed ID: 28424946 [TBL] [Abstract][Full Text] [Related]
15. Preparation and characterization of laser-melted Mg-Sn-Zn alloys for biomedical application. Shuai C; Zhou Y; Lin X; Yang Y; Gao C; Shuai X; Wu H; Liu X; Wu P; Feng P J Mater Sci Mater Med; 2017 Jan; 28(1):13. PubMed ID: 27995491 [TBL] [Abstract][Full Text] [Related]
16. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes. Hakimi O; Aghion E; Goldman J Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():226-32. PubMed ID: 25842129 [TBL] [Abstract][Full Text] [Related]
17. In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Wang HX; Guan SK; Wang X; Ren CX; Wang LG Acta Biomater; 2010 May; 6(5):1743-8. PubMed ID: 20004746 [TBL] [Abstract][Full Text] [Related]
18. Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications--alloy processing, microstructure, mechanical properties, and biodegradation. Guan RG; Cipriano AF; Zhao ZY; Lock J; Tie D; Zhao T; Cui T; Liu H Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3661-9. PubMed ID: 23910262 [TBL] [Abstract][Full Text] [Related]
19. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Lin J; Tong X; Shi Z; Zhang D; Zhang L; Wang K; Wei A; Jin L; Lin J; Li Y; Wen C Acta Biomater; 2020 Apr; 106():410-427. PubMed ID: 32068137 [TBL] [Abstract][Full Text] [Related]
20. Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys. Lu Y; Bradshaw AR; Chiu YL; Jones IP Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():480-6. PubMed ID: 25579949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]