These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 26745935)

  • 1. Low drive field amplitude for improved image resolution in magnetic particle imaging.
    Croft LR; Goodwill PW; Konkle JJ; Arami H; Price DA; Li AX; Saritas EU; Conolly SM
    Med Phys; 2016 Jan; 43(1):424. PubMed ID: 26745935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size-dependent ferrohydrodynamic relaxometry of magnetic particle imaging tracers in different environments.
    Arami H; Ferguson RM; Khandhar AP; Krishnan KM
    Med Phys; 2013 Jul; 40(7):071904. PubMed ID: 23822441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation in x-space magnetic particle imaging.
    Croft LR; Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2012 Dec; 31(12):2335-42. PubMed ID: 22968211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two dimensional magnetic particle spectrometry.
    Graeser M; von Gladiss A; Weber M; Buzug TM
    Phys Med Biol; 2017 May; 62(9):3378-3391. PubMed ID: 28140373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous temperature and viscosity estimation capability via magnetic nanoparticle relaxation.
    Utkur M; Saritas EU
    Med Phys; 2022 Apr; 49(4):2590-2601. PubMed ID: 35103333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation.
    Goodwill PW; Conolly SM
    IEEE Trans Med Imaging; 2010 Nov; 29(11):1851-9. PubMed ID: 20529726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Twenty-fold acceleration of 3D projection reconstruction MPI.
    Konkle JJ; Goodwill PW; Saritas EU; Zheng B; Lu K; Conolly SM
    Biomed Tech (Berl); 2013 Dec; 58(6):565-76. PubMed ID: 23940058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Space-Specific Mixing Excitation for High-SNR Spatial Encoding in Magnetic Particle Imaging.
    Liu Y; Li G; Li J; Tang Z; An Y; Tian J
    IEEE Trans Biomed Eng; 2024 Oct; 71(10):2889-2899. PubMed ID: 38739521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxation-based viscosity mapping for magnetic particle imaging.
    Utkur M; Muslu Y; Saritas EU
    Phys Med Biol; 2017 May; 62(9):3422-3439. PubMed ID: 28378707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory analysis for field free line magnetic particle imaging.
    Top CB; Güngör A; Ilbey S; Güven HE
    Med Phys; 2019 Apr; 46(4):1592-1607. PubMed ID: 30695100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic particle imaging: introduction to imaging and hardware realization.
    Buzug TM; Bringout G; Erbe M; Gräfe K; Graeser M; Grüttner M; Halkola A; Sattel TF; Tenner W; Wojtczyk H; Haegele J; Vogt FM; Barkhausen J; Lüdtke-Buzug K
    Z Med Phys; 2012 Dec; 22(4):323-34. PubMed ID: 22909418
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring the magnetic and pharmacokinetic properties of iron oxide magnetic particle imaging tracers.
    Ferguson RM; Khandhar AP; Arami H; Hua L; Hovorka O; Krishnan KM
    Biomed Tech (Berl); 2013 Dec; 58(6):493-507. PubMed ID: 23787461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifrequency magnetic particle imaging enabled by a combined passive and active drive field feed-through compensation approach.
    Pantke D; Holle N; Mogarkar A; Straub M; Schulz V
    Med Phys; 2019 Sep; 46(9):4077-4086. PubMed ID: 31183873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human erythrocytes as nanoparticle carriers for magnetic particle imaging.
    Markov DE; Boeve H; Gleich B; Borgert J; Antonelli A; Sfara C; Magnani M
    Phys Med Biol; 2010 Nov; 55(21):6461-73. PubMed ID: 20959685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPFS: SNR peak-based frequency selection method to alleviate resolution degradation in MPI real-time imaging.
    Shan S; Zhang C; Cheng M; Qi Y; Yu D; Wildgruber M; Ma X
    Phys Med Biol; 2024 May; 69(11):. PubMed ID: 38593815
    [No Abstract]   [Full Text] [Related]  

  • 16. Finite magnetic relaxation in x-space magnetic particle imaging: Comparison of measurements and ferrohydrodynamic models.
    Dhavalikar R; Hensley D; Maldonado-Camargo L; Croft LR; Ceron S; Goodwill PW; Conolly SM; Rinaldi C
    J Phys D Appl Phys; 2016 Aug; 49(30):. PubMed ID: 27867219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous correction of sensitivity and spatial resolution in projection-based magnetic particle imaging.
    Murase K
    Med Phys; 2020 Apr; 47(4):1845-1859. PubMed ID: 32003025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perspectives on clinical magnetic particle imaging.
    Borgert J; Schmidt JD; Schmale I; Bontus C; Gleich B; David B; Weizenecker J; Jockram J; Lauruschkat C; Mende O; Heinrich M; Halkola A; Bergmann J; Woywode O; Rahmer J
    Biomed Tech (Berl); 2013 Dec; 58(6):551-6. PubMed ID: 24025718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-channel end-to-end network with prior knowledge embedding for improving spatial resolution of magnetic particle imaging.
    Wen J; An Y; Shao L; Yin L; Peng Z; Liu Y; Tian J; Du Y
    Comput Biol Med; 2024 Aug; 178():108783. PubMed ID: 38909446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pulsed MPI Relaxometry of Brownian and Néel Field-Dependent Relaxation in Superparamagnetic Magnetite Nanoparticles Confirm Theory and Simulations.
    Saayujya C; Yousuf K; Hao Y; Hartley A; Yeo KH; Swamynathan A; Garlepp J; Huynh Q; Tay ZW; Chandrasekharan P; Fellows B; Rodrigo I; Conolly SM
    Small; 2024 Nov; 20(44):e2403283. PubMed ID: 39108190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.